Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A2BC4_hR42_167_f_ac_2f-001

This structure originally had the label A2BC4_hR42_167_f_ac_2f. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/RYPV
or https://aflow.org/p/A2BC4_hR42_167_f_ac_2f-001
or PDF Version

β-BaB$_{2}$O$_{4}$ (High Temperature) Structure: A2BC4_hR42_167_f_ac_2f-001

Picture of Structure; Click for Big Picture
Prototype B$_{2}$BaO$_{4}$
AFLOW prototype label A2BC4_hR42_167_f_ac_2f-001
ICSD 14376
Pearson symbol hR42
Space group number 167
Space group symbol $R\overline{3}c$
AFLOW prototype command aflow --proto=A2BC4_hR42_167_f_ac_2f-001
--params=$a, \allowbreak c/a, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak y_{3}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak y_{4}, \allowbreak z_{4}, \allowbreak x_{5}, \allowbreak y_{5}, \allowbreak z_{5}$

  • This is the high-temperature structure of BaB$_{2}$O$_{4}$. Cooling to temperatures between 100-400$^\circ$C it transforms into $\alpha$–BaB$_{2}$O$_{4}$. The principle difference between the two forms is the lack of inversion symmetry in the low-temperature structure.
  • This structure was determined by cooling liquid BaB$_{2}$O$_{4}$ to room temperature.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{\sqrt{3}}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}c \,\mathbf{\hat{z}}$ (2a) Ba I
$\mathbf{B_{2}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}c \,\mathbf{\hat{z}}$ (2a) Ba I
$\mathbf{B_{3}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $c x_{2} \,\mathbf{\hat{z}}$ (4c) Ba II
$\mathbf{B_{4}}$ = $- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- c \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4c) Ba II
$\mathbf{B_{5}}$ = $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ = $- c x_{2} \,\mathbf{\hat{z}}$ (4c) Ba II
$\mathbf{B_{6}}$ = $\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $c \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4c) Ba II
$\mathbf{B_{7}}$ = $x_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{3} - z_{3}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{3} - 2 y_{3} + z_{3}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{3} + y_{3} + z_{3}\right) \,\mathbf{\hat{z}}$ (12f) B I
$\mathbf{B_{8}}$ = $z_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+y_{3} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(y_{3} - z_{3}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(2 x_{3} - y_{3} - z_{3}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{3} + y_{3} + z_{3}\right) \,\mathbf{\hat{z}}$ (12f) B I
$\mathbf{B_{9}}$ = $y_{3} \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{3} - y_{3}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{3} + y_{3} - 2 z_{3}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{3} + y_{3} + z_{3}\right) \,\mathbf{\hat{z}}$ (12f) B I
$\mathbf{B_{10}}$ = $- \left(z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{3} - z_{3}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{3} - 2 y_{3} + z_{3}\right) \,\mathbf{\hat{y}}- \frac{1}{6}c \left(2 x_{3} + 2 y_{3} + 2 z_{3} - 3\right) \,\mathbf{\hat{z}}$ (12f) B I
$\mathbf{B_{11}}$ = $- \left(y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(y_{3} - z_{3}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(2 x_{3} - y_{3} - z_{3}\right) \,\mathbf{\hat{y}}- \frac{1}{6}c \left(2 x_{3} + 2 y_{3} + 2 z_{3} - 3\right) \,\mathbf{\hat{z}}$ (12f) B I
$\mathbf{B_{12}}$ = $- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{3} - y_{3}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{3} + y_{3} - 2 z_{3}\right) \,\mathbf{\hat{y}}- \frac{1}{6}c \left(2 x_{3} + 2 y_{3} + 2 z_{3} - 3\right) \,\mathbf{\hat{z}}$ (12f) B I
$\mathbf{B_{13}}$ = $- x_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{3} - z_{3}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{3} - 2 y_{3} + z_{3}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{3} + y_{3} + z_{3}\right) \,\mathbf{\hat{z}}$ (12f) B I
$\mathbf{B_{14}}$ = $- z_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- y_{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(y_{3} - z_{3}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(2 x_{3} - y_{3} - z_{3}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{3} + y_{3} + z_{3}\right) \,\mathbf{\hat{z}}$ (12f) B I
$\mathbf{B_{15}}$ = $- y_{3} \, \mathbf{a}_{1}- z_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{3} - y_{3}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{3} + y_{3} - 2 z_{3}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{3} + y_{3} + z_{3}\right) \,\mathbf{\hat{z}}$ (12f) B I
$\mathbf{B_{16}}$ = $\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{3} - z_{3}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{3} - 2 y_{3} + z_{3}\right) \,\mathbf{\hat{y}}+\frac{1}{6}c \left(2 x_{3} + 2 y_{3} + 2 z_{3} + 3\right) \,\mathbf{\hat{z}}$ (12f) B I
$\mathbf{B_{17}}$ = $\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(y_{3} - z_{3}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(2 x_{3} - y_{3} - z_{3}\right) \,\mathbf{\hat{y}}+\frac{1}{6}c \left(2 x_{3} + 2 y_{3} + 2 z_{3} + 3\right) \,\mathbf{\hat{z}}$ (12f) B I
$\mathbf{B_{18}}$ = $\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{3} - y_{3}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{3} + y_{3} - 2 z_{3}\right) \,\mathbf{\hat{y}}+\frac{1}{6}c \left(2 x_{3} + 2 y_{3} + 2 z_{3} + 3\right) \,\mathbf{\hat{z}}$ (12f) B I
$\mathbf{B_{19}}$ = $x_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{4} - z_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{4} - 2 y_{4} + z_{4}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{4} + y_{4} + z_{4}\right) \,\mathbf{\hat{z}}$ (12f) O I
$\mathbf{B_{20}}$ = $z_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+y_{4} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(y_{4} - z_{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(2 x_{4} - y_{4} - z_{4}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{4} + y_{4} + z_{4}\right) \,\mathbf{\hat{z}}$ (12f) O I
$\mathbf{B_{21}}$ = $y_{4} \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{4} - y_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{4} + y_{4} - 2 z_{4}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{4} + y_{4} + z_{4}\right) \,\mathbf{\hat{z}}$ (12f) O I
$\mathbf{B_{22}}$ = $- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{4} - z_{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{4} - 2 y_{4} + z_{4}\right) \,\mathbf{\hat{y}}- \frac{1}{6}c \left(2 x_{4} + 2 y_{4} + 2 z_{4} - 3\right) \,\mathbf{\hat{z}}$ (12f) O I
$\mathbf{B_{23}}$ = $- \left(y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(y_{4} - z_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(2 x_{4} - y_{4} - z_{4}\right) \,\mathbf{\hat{y}}- \frac{1}{6}c \left(2 x_{4} + 2 y_{4} + 2 z_{4} - 3\right) \,\mathbf{\hat{z}}$ (12f) O I
$\mathbf{B_{24}}$ = $- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{4} - y_{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{4} + y_{4} - 2 z_{4}\right) \,\mathbf{\hat{y}}- \frac{1}{6}c \left(2 x_{4} + 2 y_{4} + 2 z_{4} - 3\right) \,\mathbf{\hat{z}}$ (12f) O I
$\mathbf{B_{25}}$ = $- x_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{4} - z_{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{4} - 2 y_{4} + z_{4}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{4} + y_{4} + z_{4}\right) \,\mathbf{\hat{z}}$ (12f) O I
$\mathbf{B_{26}}$ = $- z_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- y_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(y_{4} - z_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(2 x_{4} - y_{4} - z_{4}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{4} + y_{4} + z_{4}\right) \,\mathbf{\hat{z}}$ (12f) O I
$\mathbf{B_{27}}$ = $- y_{4} \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{4} - y_{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{4} + y_{4} - 2 z_{4}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{4} + y_{4} + z_{4}\right) \,\mathbf{\hat{z}}$ (12f) O I
$\mathbf{B_{28}}$ = $\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{4} - z_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{4} - 2 y_{4} + z_{4}\right) \,\mathbf{\hat{y}}+\frac{1}{6}c \left(2 x_{4} + 2 y_{4} + 2 z_{4} + 3\right) \,\mathbf{\hat{z}}$ (12f) O I
$\mathbf{B_{29}}$ = $\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(y_{4} - z_{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(2 x_{4} - y_{4} - z_{4}\right) \,\mathbf{\hat{y}}+\frac{1}{6}c \left(2 x_{4} + 2 y_{4} + 2 z_{4} + 3\right) \,\mathbf{\hat{z}}$ (12f) O I
$\mathbf{B_{30}}$ = $\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{4} - y_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{4} + y_{4} - 2 z_{4}\right) \,\mathbf{\hat{y}}+\frac{1}{6}c \left(2 x_{4} + 2 y_{4} + 2 z_{4} + 3\right) \,\mathbf{\hat{z}}$ (12f) O I
$\mathbf{B_{31}}$ = $x_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{5} - z_{5}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{5} - 2 y_{5} + z_{5}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{5} + y_{5} + z_{5}\right) \,\mathbf{\hat{z}}$ (12f) O II
$\mathbf{B_{32}}$ = $z_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+y_{5} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(y_{5} - z_{5}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(2 x_{5} - y_{5} - z_{5}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{5} + y_{5} + z_{5}\right) \,\mathbf{\hat{z}}$ (12f) O II
$\mathbf{B_{33}}$ = $y_{5} \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{5} - y_{5}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{5} + y_{5} - 2 z_{5}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{5} + y_{5} + z_{5}\right) \,\mathbf{\hat{z}}$ (12f) O II
$\mathbf{B_{34}}$ = $- \left(z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{5} - z_{5}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{5} - 2 y_{5} + z_{5}\right) \,\mathbf{\hat{y}}- \frac{1}{6}c \left(2 x_{5} + 2 y_{5} + 2 z_{5} - 3\right) \,\mathbf{\hat{z}}$ (12f) O II
$\mathbf{B_{35}}$ = $- \left(y_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(y_{5} - z_{5}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(2 x_{5} - y_{5} - z_{5}\right) \,\mathbf{\hat{y}}- \frac{1}{6}c \left(2 x_{5} + 2 y_{5} + 2 z_{5} - 3\right) \,\mathbf{\hat{z}}$ (12f) O II
$\mathbf{B_{36}}$ = $- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{5} - y_{5}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{5} + y_{5} - 2 z_{5}\right) \,\mathbf{\hat{y}}- \frac{1}{6}c \left(2 x_{5} + 2 y_{5} + 2 z_{5} - 3\right) \,\mathbf{\hat{z}}$ (12f) O II
$\mathbf{B_{37}}$ = $- x_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{5} - z_{5}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{5} - 2 y_{5} + z_{5}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{5} + y_{5} + z_{5}\right) \,\mathbf{\hat{z}}$ (12f) O II
$\mathbf{B_{38}}$ = $- z_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}- y_{5} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(y_{5} - z_{5}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(2 x_{5} - y_{5} - z_{5}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{5} + y_{5} + z_{5}\right) \,\mathbf{\hat{z}}$ (12f) O II
$\mathbf{B_{39}}$ = $- y_{5} \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{5} - y_{5}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{5} + y_{5} - 2 z_{5}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{5} + y_{5} + z_{5}\right) \,\mathbf{\hat{z}}$ (12f) O II
$\mathbf{B_{40}}$ = $\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{5} - z_{5}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{5} - 2 y_{5} + z_{5}\right) \,\mathbf{\hat{y}}+\frac{1}{6}c \left(2 x_{5} + 2 y_{5} + 2 z_{5} + 3\right) \,\mathbf{\hat{z}}$ (12f) O II
$\mathbf{B_{41}}$ = $\left(y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(y_{5} - z_{5}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(2 x_{5} - y_{5} - z_{5}\right) \,\mathbf{\hat{y}}+\frac{1}{6}c \left(2 x_{5} + 2 y_{5} + 2 z_{5} + 3\right) \,\mathbf{\hat{z}}$ (12f) O II
$\mathbf{B_{42}}$ = $\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{5} - y_{5}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{5} + y_{5} - 2 z_{5}\right) \,\mathbf{\hat{y}}+\frac{1}{6}c \left(2 x_{5} + 2 y_{5} + 2 z_{5} + 3\right) \,\mathbf{\hat{z}}$ (12f) O II

References

  • A. D. Mighell, A. Perloff, and S. Block, The crystal structure of the high temperature form of barium borate, BaO$\cdot$B$_{2}$O$_{3}$, Acta Cryst. 20, 819–823 (1966), doi:10.1107/S0365110X66001920.

Found in


Prototype Generator

aflow --proto=A2BC4_hR42_167_f_ac_2f --params=$a,c/a,x_{2},x_{3},y_{3},z_{3},x_{4},y_{4},z_{4},x_{5},y_{5},z_{5}$

Species:

Running:

Output: