Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A2BC4_hR42_161_2b_b_4b-001

This structure originally had the label A2BC4_hR42_161_2b_b_4b. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/UFMT
or https://aflow.org/p/A2BC4_hR42_161_2b_b_4b-001
or PDF Version

α-BaB$_{2}$O$_{4}$ (Low Temperature) Structure: A2BC4_hR42_161_2b_b_4b-001

Picture of Structure; Click for Big Picture
Prototype B$_{2}$BaO$_{4}$
AFLOW prototype label A2BC4_hR42_161_2b_b_4b-001
ICSD 30885
Pearson symbol hR42
Space group number 161
Space group symbol $R3c$
AFLOW prototype command aflow --proto=A2BC4_hR42_161_2b_b_4b-001
--params=$a, \allowbreak c/a, \allowbreak x_{1}, \allowbreak y_{1}, \allowbreak z_{1}, \allowbreak x_{2}, \allowbreak y_{2}, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak y_{3}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak y_{4}, \allowbreak z_{4}, \allowbreak x_{5}, \allowbreak y_{5}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak y_{6}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak y_{7}, \allowbreak z_{7}$

  • This is the low-temperature structure. Heating to temperatures between 100-400°C it transforms into $\beta$–BaB$_{2}$O$_{4}$. The principle difference between the two forms is the lack of inversion symmetry in the low-temperature structure.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{\sqrt{3}}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $x_{1} \, \mathbf{a}_{1}+y_{1} \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{1} - z_{1}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{1} - 2 y_{1} + z_{1}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{1} + y_{1} + z_{1}\right) \,\mathbf{\hat{z}}$ (6b) B I
$\mathbf{B_{2}}$ = $z_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}+y_{1} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(y_{1} - z_{1}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(2 x_{1} - y_{1} - z_{1}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{1} + y_{1} + z_{1}\right) \,\mathbf{\hat{z}}$ (6b) B I
$\mathbf{B_{3}}$ = $y_{1} \, \mathbf{a}_{1}+z_{1} \, \mathbf{a}_{2}+x_{1} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{1} - y_{1}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{1} + y_{1} - 2 z_{1}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{1} + y_{1} + z_{1}\right) \,\mathbf{\hat{z}}$ (6b) B I
$\mathbf{B_{4}}$ = $\left(z_{1} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{1} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{1} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{1} - z_{1}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{1} - 2 y_{1} + z_{1}\right) \,\mathbf{\hat{y}}+\frac{1}{6}c \left(2 x_{1} + 2 y_{1} + 2 z_{1} + 3\right) \,\mathbf{\hat{z}}$ (6b) B I
$\mathbf{B_{5}}$ = $\left(y_{1} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{1} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{1} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(y_{1} - z_{1}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(2 x_{1} - y_{1} - z_{1}\right) \,\mathbf{\hat{y}}+\frac{1}{6}c \left(2 x_{1} + 2 y_{1} + 2 z_{1} + 3\right) \,\mathbf{\hat{z}}$ (6b) B I
$\mathbf{B_{6}}$ = $\left(x_{1} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{1} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{1} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{1} - y_{1}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{1} + y_{1} - 2 z_{1}\right) \,\mathbf{\hat{y}}+\frac{1}{6}c \left(2 x_{1} + 2 y_{1} + 2 z_{1} + 3\right) \,\mathbf{\hat{z}}$ (6b) B I
$\mathbf{B_{7}}$ = $x_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{2} - z_{2}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{2} - 2 y_{2} + z_{2}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{2} + y_{2} + z_{2}\right) \,\mathbf{\hat{z}}$ (6b) B II
$\mathbf{B_{8}}$ = $z_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+y_{2} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(y_{2} - z_{2}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(2 x_{2} - y_{2} - z_{2}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{2} + y_{2} + z_{2}\right) \,\mathbf{\hat{z}}$ (6b) B II
$\mathbf{B_{9}}$ = $y_{2} \, \mathbf{a}_{1}+z_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{2} - y_{2}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{2} + y_{2} - 2 z_{2}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{2} + y_{2} + z_{2}\right) \,\mathbf{\hat{z}}$ (6b) B II
$\mathbf{B_{10}}$ = $\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{2} - z_{2}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{2} - 2 y_{2} + z_{2}\right) \,\mathbf{\hat{y}}+\frac{1}{6}c \left(2 x_{2} + 2 y_{2} + 2 z_{2} + 3\right) \,\mathbf{\hat{z}}$ (6b) B II
$\mathbf{B_{11}}$ = $\left(y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(y_{2} - z_{2}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(2 x_{2} - y_{2} - z_{2}\right) \,\mathbf{\hat{y}}+\frac{1}{6}c \left(2 x_{2} + 2 y_{2} + 2 z_{2} + 3\right) \,\mathbf{\hat{z}}$ (6b) B II
$\mathbf{B_{12}}$ = $\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{2} - y_{2}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{2} + y_{2} - 2 z_{2}\right) \,\mathbf{\hat{y}}+\frac{1}{6}c \left(2 x_{2} + 2 y_{2} + 2 z_{2} + 3\right) \,\mathbf{\hat{z}}$ (6b) B II
$\mathbf{B_{13}}$ = $x_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{3} - z_{3}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{3} - 2 y_{3} + z_{3}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{3} + y_{3} + z_{3}\right) \,\mathbf{\hat{z}}$ (6b) Ba I
$\mathbf{B_{14}}$ = $z_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+y_{3} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(y_{3} - z_{3}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(2 x_{3} - y_{3} - z_{3}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{3} + y_{3} + z_{3}\right) \,\mathbf{\hat{z}}$ (6b) Ba I
$\mathbf{B_{15}}$ = $y_{3} \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{3} - y_{3}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{3} + y_{3} - 2 z_{3}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{3} + y_{3} + z_{3}\right) \,\mathbf{\hat{z}}$ (6b) Ba I
$\mathbf{B_{16}}$ = $\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{3} - z_{3}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{3} - 2 y_{3} + z_{3}\right) \,\mathbf{\hat{y}}+\frac{1}{6}c \left(2 x_{3} + 2 y_{3} + 2 z_{3} + 3\right) \,\mathbf{\hat{z}}$ (6b) Ba I
$\mathbf{B_{17}}$ = $\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(y_{3} - z_{3}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(2 x_{3} - y_{3} - z_{3}\right) \,\mathbf{\hat{y}}+\frac{1}{6}c \left(2 x_{3} + 2 y_{3} + 2 z_{3} + 3\right) \,\mathbf{\hat{z}}$ (6b) Ba I
$\mathbf{B_{18}}$ = $\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{3} - y_{3}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{3} + y_{3} - 2 z_{3}\right) \,\mathbf{\hat{y}}+\frac{1}{6}c \left(2 x_{3} + 2 y_{3} + 2 z_{3} + 3\right) \,\mathbf{\hat{z}}$ (6b) Ba I
$\mathbf{B_{19}}$ = $x_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{4} - z_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{4} - 2 y_{4} + z_{4}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{4} + y_{4} + z_{4}\right) \,\mathbf{\hat{z}}$ (6b) O I
$\mathbf{B_{20}}$ = $z_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+y_{4} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(y_{4} - z_{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(2 x_{4} - y_{4} - z_{4}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{4} + y_{4} + z_{4}\right) \,\mathbf{\hat{z}}$ (6b) O I
$\mathbf{B_{21}}$ = $y_{4} \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{4} - y_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{4} + y_{4} - 2 z_{4}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{4} + y_{4} + z_{4}\right) \,\mathbf{\hat{z}}$ (6b) O I
$\mathbf{B_{22}}$ = $\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{4} - z_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{4} - 2 y_{4} + z_{4}\right) \,\mathbf{\hat{y}}+\frac{1}{6}c \left(2 x_{4} + 2 y_{4} + 2 z_{4} + 3\right) \,\mathbf{\hat{z}}$ (6b) O I
$\mathbf{B_{23}}$ = $\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(y_{4} - z_{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(2 x_{4} - y_{4} - z_{4}\right) \,\mathbf{\hat{y}}+\frac{1}{6}c \left(2 x_{4} + 2 y_{4} + 2 z_{4} + 3\right) \,\mathbf{\hat{z}}$ (6b) O I
$\mathbf{B_{24}}$ = $\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{4} - y_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{4} + y_{4} - 2 z_{4}\right) \,\mathbf{\hat{y}}+\frac{1}{6}c \left(2 x_{4} + 2 y_{4} + 2 z_{4} + 3\right) \,\mathbf{\hat{z}}$ (6b) O I
$\mathbf{B_{25}}$ = $x_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{5} - z_{5}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{5} - 2 y_{5} + z_{5}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{5} + y_{5} + z_{5}\right) \,\mathbf{\hat{z}}$ (6b) O II
$\mathbf{B_{26}}$ = $z_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+y_{5} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(y_{5} - z_{5}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(2 x_{5} - y_{5} - z_{5}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{5} + y_{5} + z_{5}\right) \,\mathbf{\hat{z}}$ (6b) O II
$\mathbf{B_{27}}$ = $y_{5} \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{5} - y_{5}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{5} + y_{5} - 2 z_{5}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{5} + y_{5} + z_{5}\right) \,\mathbf{\hat{z}}$ (6b) O II
$\mathbf{B_{28}}$ = $\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{5} - z_{5}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{5} - 2 y_{5} + z_{5}\right) \,\mathbf{\hat{y}}+\frac{1}{6}c \left(2 x_{5} + 2 y_{5} + 2 z_{5} + 3\right) \,\mathbf{\hat{z}}$ (6b) O II
$\mathbf{B_{29}}$ = $\left(y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(y_{5} - z_{5}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(2 x_{5} - y_{5} - z_{5}\right) \,\mathbf{\hat{y}}+\frac{1}{6}c \left(2 x_{5} + 2 y_{5} + 2 z_{5} + 3\right) \,\mathbf{\hat{z}}$ (6b) O II
$\mathbf{B_{30}}$ = $\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{5} - y_{5}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{5} + y_{5} - 2 z_{5}\right) \,\mathbf{\hat{y}}+\frac{1}{6}c \left(2 x_{5} + 2 y_{5} + 2 z_{5} + 3\right) \,\mathbf{\hat{z}}$ (6b) O II
$\mathbf{B_{31}}$ = $x_{6} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{6} - z_{6}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{6} - 2 y_{6} + z_{6}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{6} + y_{6} + z_{6}\right) \,\mathbf{\hat{z}}$ (6b) O III
$\mathbf{B_{32}}$ = $z_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+y_{6} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(y_{6} - z_{6}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(2 x_{6} - y_{6} - z_{6}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{6} + y_{6} + z_{6}\right) \,\mathbf{\hat{z}}$ (6b) O III
$\mathbf{B_{33}}$ = $y_{6} \, \mathbf{a}_{1}+z_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{6} - y_{6}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{6} + y_{6} - 2 z_{6}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{6} + y_{6} + z_{6}\right) \,\mathbf{\hat{z}}$ (6b) O III
$\mathbf{B_{34}}$ = $\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{6} - z_{6}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{6} - 2 y_{6} + z_{6}\right) \,\mathbf{\hat{y}}+\frac{1}{6}c \left(2 x_{6} + 2 y_{6} + 2 z_{6} + 3\right) \,\mathbf{\hat{z}}$ (6b) O III
$\mathbf{B_{35}}$ = $\left(y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(y_{6} - z_{6}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(2 x_{6} - y_{6} - z_{6}\right) \,\mathbf{\hat{y}}+\frac{1}{6}c \left(2 x_{6} + 2 y_{6} + 2 z_{6} + 3\right) \,\mathbf{\hat{z}}$ (6b) O III
$\mathbf{B_{36}}$ = $\left(x_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{6} - y_{6}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{6} + y_{6} - 2 z_{6}\right) \,\mathbf{\hat{y}}+\frac{1}{6}c \left(2 x_{6} + 2 y_{6} + 2 z_{6} + 3\right) \,\mathbf{\hat{z}}$ (6b) O III
$\mathbf{B_{37}}$ = $x_{7} \, \mathbf{a}_{1}+y_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{7} - 2 y_{7} + z_{7}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{7} + y_{7} + z_{7}\right) \,\mathbf{\hat{z}}$ (6b) O IV
$\mathbf{B_{38}}$ = $z_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+y_{7} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(y_{7} - z_{7}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(2 x_{7} - y_{7} - z_{7}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{7} + y_{7} + z_{7}\right) \,\mathbf{\hat{z}}$ (6b) O IV
$\mathbf{B_{39}}$ = $y_{7} \, \mathbf{a}_{1}+z_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{7} - y_{7}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{7} + y_{7} - 2 z_{7}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{7} + y_{7} + z_{7}\right) \,\mathbf{\hat{z}}$ (6b) O IV
$\mathbf{B_{40}}$ = $\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{7} - 2 y_{7} + z_{7}\right) \,\mathbf{\hat{y}}+\frac{1}{6}c \left(2 x_{7} + 2 y_{7} + 2 z_{7} + 3\right) \,\mathbf{\hat{z}}$ (6b) O IV
$\mathbf{B_{41}}$ = $\left(y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(y_{7} - z_{7}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(2 x_{7} - y_{7} - z_{7}\right) \,\mathbf{\hat{y}}+\frac{1}{6}c \left(2 x_{7} + 2 y_{7} + 2 z_{7} + 3\right) \,\mathbf{\hat{z}}$ (6b) O IV
$\mathbf{B_{42}}$ = $\left(x_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{7} - y_{7}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{7} + y_{7} - 2 z_{7}\right) \,\mathbf{\hat{y}}+\frac{1}{6}c \left(2 x_{7} + 2 y_{7} + 2 z_{7} + 3\right) \,\mathbf{\hat{z}}$ (6b) O IV

References


Prototype Generator

aflow --proto=A2BC4_hR42_161_2b_b_4b --params=$a,c/a,x_{1},y_{1},z_{1},x_{2},y_{2},z_{2},x_{3},y_{3},z_{3},x_{4},y_{4},z_{4},x_{5},y_{5},z_{5},x_{6},y_{6},z_{6},x_{7},y_{7},z_{7}$

Species:

Running:

Output: