AFLOW Prototype: A2BC4D_oF64_43_b_a_2b_a-001
This structure originally had the label A2BC4D_oF64_43_b_a_2b_a. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)
Links to this page
https://aflow.org/p/DS2R
or
https://aflow.org/p/A2BC4D_oF64_43_b_a_2b_a-001
or
PDF Version
Prototype | H$_{2}$KO$_{4}$P |
AFLOW prototype label | A2BC4D_oF64_43_b_a_2b_a-001 |
Mineral name | archerite |
ICSD | 31151 |
Pearson symbol | oF64 |
Space group number | 43 |
Space group symbol | $Fdd2$ |
AFLOW prototype command |
aflow --proto=A2BC4D_oF64_43_b_a_2b_a-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak z_{1}, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak y_{3}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak y_{4}, \allowbreak z_{4}, \allowbreak x_{5}, \allowbreak y_{5}, \allowbreak z_{5}$ |
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $z_{1} \, \mathbf{a}_{1}+z_{1} \, \mathbf{a}_{2}- z_{1} \, \mathbf{a}_{3}$ | = | $c z_{1} \,\mathbf{\hat{z}}$ | (8a) | K I |
$\mathbf{B_{2}}$ | = | $\left(z_{1} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(z_{1} + \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(z_{1} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c \left(z_{1} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (8a) | K I |
$\mathbf{B_{3}}$ | = | $z_{2} \, \mathbf{a}_{1}+z_{2} \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ | = | $c z_{2} \,\mathbf{\hat{z}}$ | (8a) | P I |
$\mathbf{B_{4}}$ | = | $\left(z_{2} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(z_{2} + \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(z_{2} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (8a) | P I |
$\mathbf{B_{5}}$ | = | $\left(- x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(x_{3} + y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ | = | $a x_{3} \,\mathbf{\hat{x}}+b y_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ | (16b) | H I |
$\mathbf{B_{6}}$ | = | $\left(x_{3} - y_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(- x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{2}- \left(x_{3} + y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ | = | $- a x_{3} \,\mathbf{\hat{x}}- b y_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ | (16b) | H I |
$\mathbf{B_{7}}$ | = | $- \left(x_{3} + y_{3} - z_{3} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{3} + y_{3} + z_{3} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{3} - y_{3} - z_{3} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ | = | $a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- b \left(y_{3} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (16b) | H I |
$\mathbf{B_{8}}$ | = | $\left(x_{3} + y_{3} + z_{3} + \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{3} + y_{3} - z_{3} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{3} - y_{3} + z_{3} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ | = | $- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+b \left(y_{3} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (16b) | H I |
$\mathbf{B_{9}}$ | = | $\left(- x_{4} + y_{4} + z_{4}\right) \, \mathbf{a}_{1}+\left(x_{4} - y_{4} + z_{4}\right) \, \mathbf{a}_{2}+\left(x_{4} + y_{4} - z_{4}\right) \, \mathbf{a}_{3}$ | = | $a x_{4} \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ | (16b) | O I |
$\mathbf{B_{10}}$ | = | $\left(x_{4} - y_{4} + z_{4}\right) \, \mathbf{a}_{1}+\left(- x_{4} + y_{4} + z_{4}\right) \, \mathbf{a}_{2}- \left(x_{4} + y_{4} + z_{4}\right) \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{x}}- b y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ | (16b) | O I |
$\mathbf{B_{11}}$ | = | $- \left(x_{4} + y_{4} - z_{4} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{4} + y_{4} + z_{4} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{4} - y_{4} - z_{4} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ | = | $a \left(x_{4} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- b \left(y_{4} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (16b) | O I |
$\mathbf{B_{12}}$ | = | $\left(x_{4} + y_{4} + z_{4} + \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{4} + y_{4} - z_{4} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{4} - y_{4} + z_{4} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ | = | $- a \left(x_{4} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+b \left(y_{4} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (16b) | O I |
$\mathbf{B_{13}}$ | = | $\left(- x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} - y_{5} + z_{5}\right) \, \mathbf{a}_{2}+\left(x_{5} + y_{5} - z_{5}\right) \, \mathbf{a}_{3}$ | = | $a x_{5} \,\mathbf{\hat{x}}+b y_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ | (16b) | O II |
$\mathbf{B_{14}}$ | = | $\left(x_{5} - y_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(- x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{2}- \left(x_{5} + y_{5} + z_{5}\right) \, \mathbf{a}_{3}$ | = | $- a x_{5} \,\mathbf{\hat{x}}- b y_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ | (16b) | O II |
$\mathbf{B_{15}}$ | = | $- \left(x_{5} + y_{5} - z_{5} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(x_{5} + y_{5} + z_{5} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{5} - y_{5} - z_{5} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ | = | $a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- b \left(y_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (16b) | O II |
$\mathbf{B_{16}}$ | = | $\left(x_{5} + y_{5} + z_{5} + \frac{1}{4}\right) \, \mathbf{a}_{1}- \left(x_{5} + y_{5} - z_{5} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{5} - y_{5} + z_{5} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ | = | $- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+b \left(y_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (16b) | O II |