Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A2BC2_hP5_187_ac_b_i-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/AJFU
or https://aflow.org/p/A2BC2_hP5_187_ac_b_i-001
or PDF Version

Ti$_{2}$InB$_{2}$ Structure: A2BC2_hP5_187_ac_b_i-001

Picture of Structure; Click for Big Picture
Prototype B$_{2}$InTi$_{2}$
AFLOW prototype label A2BC2_hP5_187_ac_b_i-001
ICSD none
Pearson symbol hP5
Space group number 187
Space group symbol $P\overline{6}m2$
AFLOW prototype command aflow --proto=A2BC2_hP5_187_ac_b_i-001
--params=$a, \allowbreak c/a, \allowbreak z_{4}$

Other compounds with this structure

Hf$_{2}$InB$_{2}$,  Hf$_{2}$SnB$_{2}$,  Zr$_{2}$InB$_{2}$,  Zr$_{2}$TlB$_{2}$


  • (Wang, 2019) synthesized Ti$_{2}$InB$_{2}$ and found it was in space group $P\overline{6}m2$ #187, but did not give experimental positions of the atoms. Instead we use their computational results.
  • We shifted the origin of the (Wang, 2019) primitive cell so that one of the boron atoms is at the origin.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (1a) B I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}c \,\mathbf{\hat{z}}$ (1b) In I
$\mathbf{B_{3}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}$ (1c) B II
$\mathbf{B_{4}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (2i) Ti I
$\mathbf{B_{5}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (2i) Ti I

References

  • J. Wang, T.-N. Ye, Y. Gong, J. Wu, N. Miao, T. Tada, and H. Hosono, Discovery of hexagonal ternary phase Ti$_{2}$InB$_{2}$ and its evolution to layered boride TiB, Nat. Commun. 10, 2284 (2019), doi:10.1038/s41467-019-10297-8.

Found in

  • M. A. Ali, M. M. Hossain, M. M. Uddin, A. K. M. A. Islam, and S. H. Naqib, Understanding the improvement of thermo-mechanical and optical properties of 212 MAX phase borides Zr$_{2}$AB$_{2}$ (A = In, Tl), J. Mater. Res. Tech. 15, 2227–2239 (2021), doi:10.1016/j.jmrt.2021.09.042.

Prototype Generator

aflow --proto=A2BC2_hP5_187_ac_b_i --params=$a,c/a,z_{4}$

Species:

Running:

Output: