Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A2B8CD2_oC26_65_h_r_a_i-001

This structure originally had the label A2B8CD2_oC26_65_h_r_a_i. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/5BTF
or https://aflow.org/p/A2B8CD2_oC26_65_h_r_a_i-001
or PDF Version

Mg(NH$_{3}$)$_{2}$Cl$_{2}$ ($E1_{3}$) Structure: A2B8CD2_oC26_65_h_r_a_i-001

Picture of Structure; Click for Big Picture
Prototype Cl$_{2}$H$_{6}$MgN$_{2}$
AFLOW prototype label A2B8CD2_oC26_65_h_r_a_i-001
Strukturbericht designation $E1_{3}$
ICSD 202459
Pearson symbol oC26
Space group number 65
Space group symbol $Cmmm$
AFLOW prototype command aflow --proto=A2B8CD2_oC26_65_h_r_a_i-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak x_{2}, \allowbreak y_{3}, \allowbreak x_{4}, \allowbreak y_{4}, \allowbreak z_{4}$

Other compounds with this structure

Cd(NH$_{3}$)$_{2}$Cl$_{2}$,  Mg(NH$_{3}$)$_{2}$Cl$_{2}$,  Hg(NH$_{3}$)$_{2}$Cl$_{2}$,  Ni(NH$_{3}$)$_{2}$Br$_{2}$,  Ni(NH$_{3}$)$_{2}$Cl$_{2}$,  Ni(NH$_{3}$)$_{2}$I$_{2}$


  • (Gottfried, 1938) gave the $E1_{3}$ designation to Cd(NH$_{3}$)$_{2}$Cl$_{2}$, and gave coordinates in the $Cmm2$ #35 space group. However, the cited reference, (MacGillavry, 1936) noted that their coordinates allowed several different space groups, with $Cmmm$ #65 having the highest symmetry. We therefore follow most authors and use the $Cmmm$ representation.
  • (MacGillavry, 1936) could not determine the positions of the hydrogen atoms, but (Leineweber, 1999) was able to do this using the isostructural compound Mg(NH$_{3}$)$_{2}$Cl$_{2}$. Accordingly we us Mg(NH$_{3}$)$_{2}$Cl$_{2}$ for the prototype of $E1_{3}$.
  • Twelve hydrogen atoms are statistically distributed among the (16r) positions, giving each site 75% occupation.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (2a) Mg I
$\mathbf{B_{2}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4h) Cl I
$\mathbf{B_{3}}$ = $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4h) Cl I
$\mathbf{B_{4}}$ = $- y_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}$ = $b y_{3} \,\mathbf{\hat{y}}$ (4i) N I
$\mathbf{B_{5}}$ = $y_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}$ = $- b y_{3} \,\mathbf{\hat{y}}$ (4i) N I
$\mathbf{B_{6}}$ = $\left(x_{4} - y_{4}\right) \, \mathbf{a}_{1}+\left(x_{4} + y_{4}\right) \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (16r) H I
$\mathbf{B_{7}}$ = $- \left(x_{4} - y_{4}\right) \, \mathbf{a}_{1}- \left(x_{4} + y_{4}\right) \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}- b y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (16r) H I
$\mathbf{B_{8}}$ = $- \left(x_{4} + y_{4}\right) \, \mathbf{a}_{1}- \left(x_{4} - y_{4}\right) \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (16r) H I
$\mathbf{B_{9}}$ = $\left(x_{4} + y_{4}\right) \, \mathbf{a}_{1}+\left(x_{4} - y_{4}\right) \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}- b y_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (16r) H I
$\mathbf{B_{10}}$ = $- \left(x_{4} - y_{4}\right) \, \mathbf{a}_{1}- \left(x_{4} + y_{4}\right) \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}- b y_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (16r) H I
$\mathbf{B_{11}}$ = $\left(x_{4} - y_{4}\right) \, \mathbf{a}_{1}+\left(x_{4} + y_{4}\right) \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (16r) H I
$\mathbf{B_{12}}$ = $\left(x_{4} + y_{4}\right) \, \mathbf{a}_{1}+\left(x_{4} - y_{4}\right) \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}- b y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (16r) H I
$\mathbf{B_{13}}$ = $- \left(x_{4} + y_{4}\right) \, \mathbf{a}_{1}- \left(x_{4} - y_{4}\right) \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (16r) H I

References

  • A. Leineweber, M. W. Friedriszik, and H. Jacobs, Preparation and Crystal Structures of Mg(NH$_{3}$)$_{2}$Cl$_{2}$, Mg(NH$_{3}$)$_{2}$Br$_{2}$, and Mg(NH$_{3}$)$_{2}$I$_{2}$, J. Solid State Chem. 147, 229–234 (1999), doi:10.1006/jssc.1999.8238.
  • C. H. MacGillavry and J. M. Bijvoet, Die Kristallstruktur von Zn(NH$_{3}$)$_{2}$Cl$_{2}$ und Zn(NH$_{3}$)$_{2}$Br$_{2}$, Z. Kristallogr. 94, 231–245 (1936), doi:10.1524/zkri.1936.94.1.249.
  • C. Gottfried, ed., Strukturbericht Band IV 1936 (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1938).

Prototype Generator

aflow --proto=A2B8CD2_oC26_65_h_r_a_i --params=$a,b/a,c/a,x_{2},y_{3},x_{4},y_{4},z_{4}$

Species:

Running:

Output: