AFLOW Prototype: A2B6C_hP9_162_c_k_b-001
This structure originally had the label A2B6C_hP9_162_d_k_a. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)
Links to this page
https://aflow.org/p/WZ1P
or
https://aflow.org/p/A2B6C_hP9_162_c_k_b-001
or
PDF Version
Prototype | Cl$_{2}$(H$_{2}$O)$_{6}$Sr |
AFLOW prototype label | A2B6C_hP9_162_c_k_b-001 |
Strukturbericht designation | $I1_{3}$ |
ICSD | none |
Pearson symbol | hP9 |
Space group number | 162 |
Space group symbol | $P\overline{3}1m$ |
AFLOW prototype command |
aflow --proto=A2B6C_hP9_162_c_k_b-001
--params=$a, \allowbreak c/a, \allowbreak x_{3}, \allowbreak z_{3}$ |
CaCl$_{2}\cdot$(H$_{2}$O)$_{6}$, CaBr$_{2}\cdot$(H$_{2}$O)$_{6}$, SrBr$_{2}\cdot$(H$_{2}$O)$_{6}$, CaI$_{2}\cdot$(H$_{2}$O)$_{6}$, SrI$_{2}\cdot$(H$_{2}$O)$_{6}$, BaI$_{2}\cdot$(H$_{2}$O)$_{6}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}c \,\mathbf{\hat{z}}$ | (1b) | Sr I |
$\mathbf{B_{2}}$ | = | $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}$ | (2c) | Cl I |
$\mathbf{B_{3}}$ | = | $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}$ | (2c) | Cl I |
$\mathbf{B_{4}}$ | = | $x_{3} \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a x_{3} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ | (6k) | H I |
$\mathbf{B_{5}}$ | = | $x_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a x_{3} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ | (6k) | H I |
$\mathbf{B_{6}}$ | = | $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ | = | $- a x_{3} \,\mathbf{\hat{x}}+c z_{3} \,\mathbf{\hat{z}}$ | (6k) | H I |
$\mathbf{B_{7}}$ | = | $- x_{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a x_{3} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ | (6k) | H I |
$\mathbf{B_{8}}$ | = | $- x_{3} \, \mathbf{a}_{1}- z_{3} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a x_{3} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}- c z_{3} \,\mathbf{\hat{z}}$ | (6k) | H I |
$\mathbf{B_{9}}$ | = | $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ | = | $a x_{3} \,\mathbf{\hat{x}}- c z_{3} \,\mathbf{\hat{z}}$ | (6k) | H I |