AFLOW Prototype: A2B3_hR10_167_c_e-001
This structure originally had the label A2B3_hR10_167_c_e. Calls to that address will be redirected here.
If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)
Links to this page
https://aflow.org/p/CBQY
or
https://aflow.org/p/A2B3_hR10_167_c_e-001
or
PDF Version
Prototype | Al$_{2}$O$_{3}$ |
AFLOW prototype label | A2B3_hR10_167_c_e-001 |
Strukturbericht designation | $D5_{1}$ |
Mineral name | corundum |
ICSD | 9770 |
Pearson symbol | hR10 |
Space group number | 167 |
Space group symbol | $R\overline{3}c$ |
AFLOW prototype command |
aflow --proto=A2B3_hR10_167_c_e-001
--params=$a, \allowbreak c/a, \allowbreak x_{1}, \allowbreak x_{2}$ |
$\gamma$-Al$_{2}$S$_{3}$, Cr$_{2}$O$_{3}$ (Eskolaite), Fe$_{2}$O$_{3}$ (Hematite), $\alpha$-Ga$_{2}$O$_{3}$, Lu$_{2}$S$_{3}$, Rh$_{2}$O$_{3}$, Ti$_{2}$O$_{3}$ (Tistarite), V$_{2}$O$_{3}$ (Karelianite), Yb$_{2}$S$_{3}$
--hex
. Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $x_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}+x_{1} \, \mathbf{a}_{3}$ | = | $c x_{1} \,\mathbf{\hat{z}}$ | (4c) | Al I |
$\mathbf{B_{2}}$ | = | $- \left(x_{1} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{1} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{1} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- c \left(x_{1} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (4c) | Al I |
$\mathbf{B_{3}}$ | = | $- x_{1} \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{2}- x_{1} \, \mathbf{a}_{3}$ | = | $- c x_{1} \,\mathbf{\hat{z}}$ | (4c) | Al I |
$\mathbf{B_{4}}$ | = | $\left(x_{1} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{1} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{1} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $c \left(x_{1} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (4c) | Al I |
$\mathbf{B_{5}}$ | = | $x_{2} \, \mathbf{a}_{1}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{8}a \left(4 x_{2} - 1\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{8}a \left(4 x_{2} - 1\right) \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (6e) | O I |
$\mathbf{B_{6}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{8}a \left(4 x_{2} - 1\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{8}a \left(4 x_{2} - 1\right) \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (6e) | O I |
$\mathbf{B_{7}}$ | = | $- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ | = | $- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (6e) | O I |
$\mathbf{B_{8}}$ | = | $- x_{2} \, \mathbf{a}_{1}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $- \frac{1}{8}a \left(4 x_{2} + 3\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{24}a \left(12 x_{2} + 1\right) \,\mathbf{\hat{y}}+\frac{5}{12}c \,\mathbf{\hat{z}}$ | (6e) | O I |
$\mathbf{B_{9}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \frac{1}{8}a \left(4 x_{2} - 1\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{24}a \left(12 x_{2} + 5\right) \,\mathbf{\hat{y}}+\frac{5}{12}c \,\mathbf{\hat{z}}$ | (6e) | O I |
$\mathbf{B_{10}}$ | = | $\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ | = | $a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{5}{12}c \,\mathbf{\hat{z}}$ | (6e) | O I |