Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A2B3_hR10_167_c_e-001

This structure originally had the label A2B3_hR10_167_c_e. Calls to that address will be redirected here.

If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)

Links to this page

https://aflow.org/p/CBQY
or https://aflow.org/p/A2B3_hR10_167_c_e-001
or PDF Version

Corundum (α-alumina, Al$_{2}$O$_{3}$, $D5_{1}$) Structure: A2B3_hR10_167_c_e-001

Picture of Structure; Click for Big Picture
Prototype Al$_{2}$O$_{3}$
AFLOW prototype label A2B3_hR10_167_c_e-001
Strukturbericht designation $D5_{1}$
Mineral name corundum
ICSD 9770
Pearson symbol hR10
Space group number 167
Space group symbol $R\overline{3}c$
AFLOW prototype command aflow --proto=A2B3_hR10_167_c_e-001
--params=$a, \allowbreak c/a, \allowbreak x_{1}, \allowbreak x_{2}$

Other compounds with this structure

$\gamma$-Al$_{2}$S$_{3}$,  Cr$_{2}$O$_{3}$ (Eskolaite),  Fe$_{2}$O$_{3}$ (Hematite),  $\alpha$-Ga$_{2}$O$_{3}$,  Lu$_{2}$S$_{3}$,  Rh$_{2}$O$_{3}$,  Ti$_{2}$O$_{3}$ (Tistarite),  V$_{2}$O$_{3}$ (Karelianite),  Yb$_{2}$S$_{3}$



\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{\sqrt{3}}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $x_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}+x_{1} \, \mathbf{a}_{3}$ = $c x_{1} \,\mathbf{\hat{z}}$ (4c) Al I
$\mathbf{B_{2}}$ = $- \left(x_{1} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{1} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{1} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- c \left(x_{1} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4c) Al I
$\mathbf{B_{3}}$ = $- x_{1} \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{2}- x_{1} \, \mathbf{a}_{3}$ = $- c x_{1} \,\mathbf{\hat{z}}$ (4c) Al I
$\mathbf{B_{4}}$ = $\left(x_{1} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{1} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{1} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $c \left(x_{1} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4c) Al I
$\mathbf{B_{5}}$ = $x_{2} \, \mathbf{a}_{1}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{8}a \left(4 x_{2} - 1\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{8}a \left(4 x_{2} - 1\right) \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6e) O I
$\mathbf{B_{6}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{8}a \left(4 x_{2} - 1\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{8}a \left(4 x_{2} - 1\right) \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6e) O I
$\mathbf{B_{7}}$ = $- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6e) O I
$\mathbf{B_{8}}$ = $- x_{2} \, \mathbf{a}_{1}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- \frac{1}{8}a \left(4 x_{2} + 3\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{24}a \left(12 x_{2} + 1\right) \,\mathbf{\hat{y}}+\frac{5}{12}c \,\mathbf{\hat{z}}$ (6e) O I
$\mathbf{B_{9}}$ = $\frac{3}{4} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{8}a \left(4 x_{2} - 1\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{24}a \left(12 x_{2} + 5\right) \,\mathbf{\hat{y}}+\frac{5}{12}c \,\mathbf{\hat{z}}$ (6e) O I
$\mathbf{B_{10}}$ = $\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ = $a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{5}{12}c \,\mathbf{\hat{z}}$ (6e) O I

References

  • L. W. Finger and R. M. Hazen, Crystal structure and compression of ruby to 46 kbar, J. Appl. Phys. 49, 5823–5826 (1978), doi:10.1063/1.324598.

Prototype Generator

aflow --proto=A2B3_hR10_167_c_e --params=$a,c/a,x_{1},x_{2}$

Species:

Running:

Output: