AFLOW Prototype: A2B3_hP60_194_3fk_cdef2k-001
This structure originally had the label A2B3_hP60_194_3fk_cdef2k. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)
Links to this page
https://aflow.org/p/T15Z
or
https://aflow.org/p/A2B3_hP60_194_3fk_cdef2k-001
or
PDF Version
Prototype | Al$_{2}$O$_{3}$ |
AFLOW prototype label | A2B3_hP60_194_3fk_cdef2k-001 |
Strukturbericht designation | $D5_{6}$ |
Mineral name | β-alumina |
ICSD | 24226 |
Pearson symbol | hP60 |
Space group number | 194 |
Space group symbol | $P6_3/mmc$ |
AFLOW prototype command |
aflow --proto=A2B3_hP60_194_3fk_cdef2k-001
--params=$a, \allowbreak c/a, \allowbreak z_{3}, \allowbreak z_{4}, \allowbreak z_{5}, \allowbreak z_{6}, \allowbreak z_{7}, \allowbreak x_{8}, \allowbreak z_{8}, \allowbreak x_{9}, \allowbreak z_{9}, \allowbreak x_{10}, \allowbreak z_{10}$ |
with small Na$_{2}$O impurities.
idealstructure.
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (2c) | O I |
$\mathbf{B_{2}}$ | = | $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ | (2c) | O I |
$\mathbf{B_{3}}$ | = | $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ | (2d) | O II |
$\mathbf{B_{4}}$ | = | $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (2d) | O II |
$\mathbf{B_{5}}$ | = | $z_{3} \, \mathbf{a}_{3}$ | = | $c z_{3} \,\mathbf{\hat{z}}$ | (4e) | O III |
$\mathbf{B_{6}}$ | = | $\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $c \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (4e) | O III |
$\mathbf{B_{7}}$ | = | $- z_{3} \, \mathbf{a}_{3}$ | = | $- c z_{3} \,\mathbf{\hat{z}}$ | (4e) | O III |
$\mathbf{B_{8}}$ | = | $- \left(z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- c \left(z_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (4e) | O III |
$\mathbf{B_{9}}$ | = | $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ | (4f) | Al I |
$\mathbf{B_{10}}$ | = | $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (4f) | Al I |
$\mathbf{B_{11}}$ | = | $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ | (4f) | Al I |
$\mathbf{B_{12}}$ | = | $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c \left(z_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (4f) | Al I |
$\mathbf{B_{13}}$ | = | $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ | (4f) | Al II |
$\mathbf{B_{14}}$ | = | $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (4f) | Al II |
$\mathbf{B_{15}}$ | = | $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c z_{5} \,\mathbf{\hat{z}}$ | (4f) | Al II |
$\mathbf{B_{16}}$ | = | $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}- \left(z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c \left(z_{5} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (4f) | Al II |
$\mathbf{B_{17}}$ | = | $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ | (4f) | Al III |
$\mathbf{B_{18}}$ | = | $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (4f) | Al III |
$\mathbf{B_{19}}$ | = | $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ | (4f) | Al III |
$\mathbf{B_{20}}$ | = | $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c \left(z_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (4f) | Al III |
$\mathbf{B_{21}}$ | = | $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ | (4f) | O IV |
$\mathbf{B_{22}}$ | = | $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (4f) | O IV |
$\mathbf{B_{23}}$ | = | $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ | (4f) | O IV |
$\mathbf{B_{24}}$ | = | $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c \left(z_{7} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (4f) | O IV |
$\mathbf{B_{25}}$ | = | $x_{8} \, \mathbf{a}_{1}+2 x_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ | = | $\frac{3}{2}a x_{8} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ | (12k) | Al IV |
$\mathbf{B_{26}}$ | = | $- 2 x_{8} \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ | = | $- \frac{3}{2}a x_{8} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ | (12k) | Al IV |
$\mathbf{B_{27}}$ | = | $x_{8} \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ | = | $- \sqrt{3}a x_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ | (12k) | Al IV |
$\mathbf{B_{28}}$ | = | $- x_{8} \, \mathbf{a}_{1}- 2 x_{8} \, \mathbf{a}_{2}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \frac{3}{2}a x_{8} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{8} \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (12k) | Al IV |
$\mathbf{B_{29}}$ | = | $2 x_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{3}{2}a x_{8} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{8} \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (12k) | Al IV |
$\mathbf{B_{30}}$ | = | $- x_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\sqrt{3}a x_{8} \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (12k) | Al IV |
$\mathbf{B_{31}}$ | = | $2 x_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ | = | $\frac{3}{2}a x_{8} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{8} \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ | (12k) | Al IV |
$\mathbf{B_{32}}$ | = | $- x_{8} \, \mathbf{a}_{1}- 2 x_{8} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ | = | $- \frac{3}{2}a x_{8} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{8} \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ | (12k) | Al IV |
$\mathbf{B_{33}}$ | = | $- x_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ | = | $\sqrt{3}a x_{8} \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ | (12k) | Al IV |
$\mathbf{B_{34}}$ | = | $- 2 x_{8} \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}- \left(z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \frac{3}{2}a x_{8} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{8} \,\mathbf{\hat{y}}- c \left(z_{8} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (12k) | Al IV |
$\mathbf{B_{35}}$ | = | $x_{8} \, \mathbf{a}_{1}+2 x_{8} \, \mathbf{a}_{2}- \left(z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{3}{2}a x_{8} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{8} \,\mathbf{\hat{y}}- c \left(z_{8} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (12k) | Al IV |
$\mathbf{B_{36}}$ | = | $x_{8} \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}- \left(z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \sqrt{3}a x_{8} \,\mathbf{\hat{y}}- c \left(z_{8} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (12k) | Al IV |
$\mathbf{B_{37}}$ | = | $x_{9} \, \mathbf{a}_{1}+2 x_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ | = | $\frac{3}{2}a x_{9} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ | (12k) | O V |
$\mathbf{B_{38}}$ | = | $- 2 x_{9} \, \mathbf{a}_{1}- x_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ | = | $- \frac{3}{2}a x_{9} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ | (12k) | O V |
$\mathbf{B_{39}}$ | = | $x_{9} \, \mathbf{a}_{1}- x_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ | = | $- \sqrt{3}a x_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ | (12k) | O V |
$\mathbf{B_{40}}$ | = | $- x_{9} \, \mathbf{a}_{1}- 2 x_{9} \, \mathbf{a}_{2}+\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \frac{3}{2}a x_{9} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{9} \,\mathbf{\hat{y}}+c \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (12k) | O V |
$\mathbf{B_{41}}$ | = | $2 x_{9} \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}+\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{3}{2}a x_{9} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{9} \,\mathbf{\hat{y}}+c \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (12k) | O V |
$\mathbf{B_{42}}$ | = | $- x_{9} \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}+\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\sqrt{3}a x_{9} \,\mathbf{\hat{y}}+c \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (12k) | O V |
$\mathbf{B_{43}}$ | = | $2 x_{9} \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ | = | $\frac{3}{2}a x_{9} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{9} \,\mathbf{\hat{y}}- c z_{9} \,\mathbf{\hat{z}}$ | (12k) | O V |
$\mathbf{B_{44}}$ | = | $- x_{9} \, \mathbf{a}_{1}- 2 x_{9} \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ | = | $- \frac{3}{2}a x_{9} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{9} \,\mathbf{\hat{y}}- c z_{9} \,\mathbf{\hat{z}}$ | (12k) | O V |
$\mathbf{B_{45}}$ | = | $- x_{9} \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ | = | $\sqrt{3}a x_{9} \,\mathbf{\hat{y}}- c z_{9} \,\mathbf{\hat{z}}$ | (12k) | O V |
$\mathbf{B_{46}}$ | = | $- 2 x_{9} \, \mathbf{a}_{1}- x_{9} \, \mathbf{a}_{2}- \left(z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \frac{3}{2}a x_{9} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{9} \,\mathbf{\hat{y}}- c \left(z_{9} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (12k) | O V |
$\mathbf{B_{47}}$ | = | $x_{9} \, \mathbf{a}_{1}+2 x_{9} \, \mathbf{a}_{2}- \left(z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{3}{2}a x_{9} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{9} \,\mathbf{\hat{y}}- c \left(z_{9} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (12k) | O V |
$\mathbf{B_{48}}$ | = | $x_{9} \, \mathbf{a}_{1}- x_{9} \, \mathbf{a}_{2}- \left(z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \sqrt{3}a x_{9} \,\mathbf{\hat{y}}- c \left(z_{9} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (12k) | O V |
$\mathbf{B_{49}}$ | = | $x_{10} \, \mathbf{a}_{1}+2 x_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ | = | $\frac{3}{2}a x_{10} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ | (12k) | O VI |
$\mathbf{B_{50}}$ | = | $- 2 x_{10} \, \mathbf{a}_{1}- x_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ | = | $- \frac{3}{2}a x_{10} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ | (12k) | O VI |
$\mathbf{B_{51}}$ | = | $x_{10} \, \mathbf{a}_{1}- x_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ | = | $- \sqrt{3}a x_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ | (12k) | O VI |
$\mathbf{B_{52}}$ | = | $- x_{10} \, \mathbf{a}_{1}- 2 x_{10} \, \mathbf{a}_{2}+\left(z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \frac{3}{2}a x_{10} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{10} \,\mathbf{\hat{y}}+c \left(z_{10} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (12k) | O VI |
$\mathbf{B_{53}}$ | = | $2 x_{10} \, \mathbf{a}_{1}+x_{10} \, \mathbf{a}_{2}+\left(z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{3}{2}a x_{10} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{10} \,\mathbf{\hat{y}}+c \left(z_{10} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (12k) | O VI |
$\mathbf{B_{54}}$ | = | $- x_{10} \, \mathbf{a}_{1}+x_{10} \, \mathbf{a}_{2}+\left(z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\sqrt{3}a x_{10} \,\mathbf{\hat{y}}+c \left(z_{10} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (12k) | O VI |
$\mathbf{B_{55}}$ | = | $2 x_{10} \, \mathbf{a}_{1}+x_{10} \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ | = | $\frac{3}{2}a x_{10} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{10} \,\mathbf{\hat{y}}- c z_{10} \,\mathbf{\hat{z}}$ | (12k) | O VI |
$\mathbf{B_{56}}$ | = | $- x_{10} \, \mathbf{a}_{1}- 2 x_{10} \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ | = | $- \frac{3}{2}a x_{10} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{10} \,\mathbf{\hat{y}}- c z_{10} \,\mathbf{\hat{z}}$ | (12k) | O VI |
$\mathbf{B_{57}}$ | = | $- x_{10} \, \mathbf{a}_{1}+x_{10} \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ | = | $\sqrt{3}a x_{10} \,\mathbf{\hat{y}}- c z_{10} \,\mathbf{\hat{z}}$ | (12k) | O VI |
$\mathbf{B_{58}}$ | = | $- 2 x_{10} \, \mathbf{a}_{1}- x_{10} \, \mathbf{a}_{2}- \left(z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \frac{3}{2}a x_{10} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{10} \,\mathbf{\hat{y}}- c \left(z_{10} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (12k) | O VI |
$\mathbf{B_{59}}$ | = | $x_{10} \, \mathbf{a}_{1}+2 x_{10} \, \mathbf{a}_{2}- \left(z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{3}{2}a x_{10} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{10} \,\mathbf{\hat{y}}- c \left(z_{10} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (12k) | O VI |
$\mathbf{B_{60}}$ | = | $x_{10} \, \mathbf{a}_{1}- x_{10} \, \mathbf{a}_{2}- \left(z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \sqrt{3}a x_{10} \,\mathbf{\hat{y}}- c \left(z_{10} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (12k) | O VI |