Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A2B3_hP20_159_bc_2c-001

This structure originally had the label A2B3_hP20_159_bc_2c. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)

Links to this page

https://aflow.org/p/XT2J
or https://aflow.org/p/A2B3_hP20_159_bc_2c-001
or PDF Version

HP-Bi$_{2}$O$_{3}$ Structure: A2B3_hP20_159_bc_2c-001

Picture of Structure; Click for Big Picture
Prototype Bi$_{2}$O$_{3}$
AFLOW prototype label A2B3_hP20_159_bc_2c-001
ICSD 183150
Pearson symbol hP20
Space group number 159
Space group symbol $P31c$
AFLOW prototype command aflow --proto=A2B3_hP20_159_bc_2c-001
--params=$a, \allowbreak c/a, \allowbreak z_{1}, \allowbreak x_{2}, \allowbreak y_{2}, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak y_{3}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak y_{4}, \allowbreak z_{4}$


\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{1} \,\mathbf{\hat{z}}$ (2b) Bi I
$\mathbf{B_{2}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\left(z_{1} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c \left(z_{1} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (2b) Bi I
$\mathbf{B_{3}}$ = $x_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{2} + y_{2}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{2} - y_{2}\right) \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (6c) Bi II
$\mathbf{B_{4}}$ = $- y_{2} \, \mathbf{a}_{1}+\left(x_{2} - y_{2}\right) \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{2} - 2 y_{2}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{2} \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (6c) Bi II
$\mathbf{B_{5}}$ = $- \left(x_{2} - y_{2}\right) \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{2} - y_{2}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{2} \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (6c) Bi II
$\mathbf{B_{6}}$ = $y_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{2} + y_{2}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{2} - y_{2}\right) \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (6c) Bi II
$\mathbf{B_{7}}$ = $\left(x_{2} - y_{2}\right) \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}+\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{2} - 2 y_{2}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{2} \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (6c) Bi II
$\mathbf{B_{8}}$ = $- x_{2} \, \mathbf{a}_{1}- \left(x_{2} - y_{2}\right) \, \mathbf{a}_{2}+\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{2} - y_{2}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{2} \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (6c) Bi II
$\mathbf{B_{9}}$ = $x_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{3} + y_{3}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{3} - y_{3}\right) \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (6c) O I
$\mathbf{B_{10}}$ = $- y_{3} \, \mathbf{a}_{1}+\left(x_{3} - y_{3}\right) \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{3} - 2 y_{3}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (6c) O I
$\mathbf{B_{11}}$ = $- \left(x_{3} - y_{3}\right) \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{3} - y_{3}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (6c) O I
$\mathbf{B_{12}}$ = $y_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{3} + y_{3}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{3} - y_{3}\right) \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (6c) O I
$\mathbf{B_{13}}$ = $\left(x_{3} - y_{3}\right) \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{3} - 2 y_{3}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (6c) O I
$\mathbf{B_{14}}$ = $- x_{3} \, \mathbf{a}_{1}- \left(x_{3} - y_{3}\right) \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{3} - y_{3}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{3} \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (6c) O I
$\mathbf{B_{15}}$ = $x_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{4} + y_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \left(x_{4} - y_{4}\right) \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (6c) O II
$\mathbf{B_{16}}$ = $- y_{4} \, \mathbf{a}_{1}+\left(x_{4} - y_{4}\right) \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{4} - 2 y_{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (6c) O II
$\mathbf{B_{17}}$ = $- \left(x_{4} - y_{4}\right) \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{4} - y_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (6c) O II
$\mathbf{B_{18}}$ = $y_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{4} + y_{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \left(x_{4} - y_{4}\right) \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (6c) O II
$\mathbf{B_{19}}$ = $\left(x_{4} - y_{4}\right) \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{4} - 2 y_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (6c) O II
$\mathbf{B_{20}}$ = $- x_{4} \, \mathbf{a}_{1}- \left(x_{4} - y_{4}\right) \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(2 x_{4} - y_{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a y_{4} \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (6c) O II

References

  • T. Locherer, D. L. V. K. Prasad, R. Dinnebier, U. Wedig, M. Jansen, G. Garbarino, and T. Hansen, High-pressure structural evolution of HP-Bi$_{2}$O$_{3}$, Phys. Rev. B 83, 214102 (2011), doi:10.1103/PhysRevB.83.214102.
  • H. A. Harwig, On the Structure of Bismuthsesquioxide: The α, β, γ, and δ-phase, Z. Anorganische und Allgemeine Chemie 444, 151–166 (1978), doi:10.1002/zaac.19784440118.

Found in

  • P. Villars and K. Cenzual, Pearson's Crystal Data – Crystal Structure Database for Inorganic Compounds (2013). ASM International.

Prototype Generator

aflow --proto=A2B3_hP20_159_bc_2c --params=$a,c/a,z_{1},x_{2},y_{2},z_{2},x_{3},y_{3},z_{3},x_{4},y_{4},z_{4}$

Species:

Running:

Output: