AFLOW Prototype: A2B3C6D_hP12_164_d_e_i_a-001
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/K216
or
https://aflow.org/p/A2B3C6D_hP12_164_d_e_i_a-001
or
PDF Version
Prototype | Cl$_{2}$Cu$_{3}$(OH)$_{6}$Zn |
AFLOW prototype label | A2B3C6D_hP12_164_d_e_i_a-001 |
Mineral name | kapellasite |
ICSD | 157870 |
Pearson symbol | hP12 |
Space group number | 164 |
Space group symbol | $P\overline{3}m1$ |
AFLOW prototype command |
aflow --proto=A2B3C6D_hP12_164_d_e_i_a-001
--params=$a, \allowbreak c/a, \allowbreak z_{2}, \allowbreak x_{4}, \allowbreak z_{4}$ |
Oto represent all the OH/Cl sites.
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (1a) | Zn I |
$\mathbf{B_{2}}$ | = | $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ | (2d) | Cl I |
$\mathbf{B_{3}}$ | = | $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c z_{2} \,\mathbf{\hat{z}}$ | (2d) | Cl I |
$\mathbf{B_{4}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}$ | (3e) | Cu I |
$\mathbf{B_{5}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}$ | (3e) | Cu I |
$\mathbf{B_{6}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}$ | (3e) | Cu I |
$\mathbf{B_{7}}$ | = | $x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ | = | $- \sqrt{3}a x_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ | (6i) | O I |
$\mathbf{B_{8}}$ | = | $x_{4} \, \mathbf{a}_{1}+2 x_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ | = | $\frac{3}{2}a x_{4} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ | (6i) | O I |
$\mathbf{B_{9}}$ | = | $- 2 x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ | = | $- \frac{3}{2}a x_{4} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ | (6i) | O I |
$\mathbf{B_{10}}$ | = | $- x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ | = | $\sqrt{3}a x_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ | (6i) | O I |
$\mathbf{B_{11}}$ | = | $2 x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ | = | $\frac{3}{2}a x_{4} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ | (6i) | O I |
$\mathbf{B_{12}}$ | = | $- x_{4} \, \mathbf{a}_{1}- 2 x_{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ | = | $- \frac{3}{2}a x_{4} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ | (6i) | O I |