Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A2B3C6D_hP12_164_d_e_i_a-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/K216
or https://aflow.org/p/A2B3C6D_hP12_164_d_e_i_a-001
or PDF Version

Kapellasite (Cu$_{3}$Zn(OH)$_{6}$Cl$_{2}$) Structure: A2B3C6D_hP12_164_d_e_i_a-001

Picture of Structure; Click for Big Picture
Prototype Cl$_{2}$Cu$_{3}$(OH)$_{6}$Zn
AFLOW prototype label A2B3C6D_hP12_164_d_e_i_a-001
Mineral name kapellasite
ICSD 157870
Pearson symbol hP12
Space group number 164
Space group symbol $P\overline{3}m1$
AFLOW prototype command aflow --proto=A2B3C6D_hP12_164_d_e_i_a-001
--params=$a, \allowbreak c/a, \allowbreak z_{2}, \allowbreak x_{4}, \allowbreak z_{4}$

  • Approximately 3% of the OH radicals are replace by chlorine atoms. We use O to represent all the OH/Cl sites.
  • (Krause, 2006) placed the zinc atom at the (1b) Wyckoff position, (0 0 1/2). We shifted the origin of the structure so that the zinc atom is at the (1a) Wyckoff site.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (1a) Zn I
$\mathbf{B_{2}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (2d) Cl I
$\mathbf{B_{3}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c z_{2} \,\mathbf{\hat{z}}$ (2d) Cl I
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{1}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}$ (3e) Cu I
$\mathbf{B_{5}}$ = $\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}$ (3e) Cu I
$\mathbf{B_{6}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}$ (3e) Cu I
$\mathbf{B_{7}}$ = $x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $- \sqrt{3}a x_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (6i) O I
$\mathbf{B_{8}}$ = $x_{4} \, \mathbf{a}_{1}+2 x_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{4} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (6i) O I
$\mathbf{B_{9}}$ = $- 2 x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{4} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (6i) O I
$\mathbf{B_{10}}$ = $- x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $\sqrt{3}a x_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (6i) O I
$\mathbf{B_{11}}$ = $2 x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{4} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (6i) O I
$\mathbf{B_{12}}$ = $- x_{4} \, \mathbf{a}_{1}- 2 x_{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{4} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (6i) O I

References

  • W. Krause, H.-J. Bernhardt, R. S. W. Braithwaite, U. Kolitsch, and R. Pritchard, Kapellasite, Cu$_{3}$Zn(OH)$_{6}$Cl$_{2}$, a new mineral from Lavrion, Greece, and its crystal structure, Mineral. Mag. 70, 329–340 (2006), doi:10.1180/0026461067030336.

Prototype Generator

aflow --proto=A2B3C6D_hP12_164_d_e_i_a --params=$a,c/a,z_{2},x_{4},z_{4}$

Species:

Running:

Output: