AFLOW Prototype: A25B21_hR92_167_b2e3f_e3f-001
This structure originally had the label A25B21_hR92_167_b2e3f_e3f. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)
Links to this page
https://aflow.org/p/1BVC
or
https://aflow.org/p/A25B21_hR92_167_b2e3f_e3f-001
or
PDF Version
Prototype | Re$_{25}$Zr$_{21}$ |
AFLOW prototype label | A25B21_hR92_167_b2e3f_e3f-001 |
ICSD | 105909 |
Pearson symbol | hR92 |
Space group number | 167 |
Space group symbol | $R\overline{3}c$ |
AFLOW prototype command |
aflow --proto=A25B21_hR92_167_b2e3f_e3f-001
--params=$a, \allowbreak c/a, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak x_{5}, \allowbreak y_{5}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak y_{6}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak y_{7}, \allowbreak z_{7}, \allowbreak x_{8}, \allowbreak y_{8}, \allowbreak z_{8}, \allowbreak x_{9}, \allowbreak y_{9}, \allowbreak z_{9}, \allowbreak x_{10}, \allowbreak y_{10}, \allowbreak z_{10}$ |
Hf$_{21}$Re$_{25}$, Mg$_{21}$Zn$_{25}$, Ti$_{21}$Mn$_{25}$, Ti$_{21}$Re$_{25}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (2b) | Re I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}c \,\mathbf{\hat{z}}$ | (2b) | Re I |
$\mathbf{B_{3}}$ | = | $x_{2} \, \mathbf{a}_{1}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{8}a \left(4 x_{2} - 1\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{8}a \left(4 x_{2} - 1\right) \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (6e) | Re II |
$\mathbf{B_{4}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{8}a \left(4 x_{2} - 1\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{8}a \left(4 x_{2} - 1\right) \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (6e) | Re II |
$\mathbf{B_{5}}$ | = | $- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ | = | $- a \left(x_{2} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (6e) | Re II |
$\mathbf{B_{6}}$ | = | $- x_{2} \, \mathbf{a}_{1}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $- \frac{1}{8}a \left(4 x_{2} + 3\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{24}a \left(12 x_{2} + 1\right) \,\mathbf{\hat{y}}+\frac{5}{12}c \,\mathbf{\hat{z}}$ | (6e) | Re II |
$\mathbf{B_{7}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \frac{1}{8}a \left(4 x_{2} - 1\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{24}a \left(12 x_{2} + 5\right) \,\mathbf{\hat{y}}+\frac{5}{12}c \,\mathbf{\hat{z}}$ | (6e) | Re II |
$\mathbf{B_{8}}$ | = | $\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ | = | $a \left(x_{2} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{5}{12}c \,\mathbf{\hat{z}}$ | (6e) | Re II |
$\mathbf{B_{9}}$ | = | $x_{3} \, \mathbf{a}_{1}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{8}a \left(4 x_{3} - 1\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{8}a \left(4 x_{3} - 1\right) \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (6e) | Re III |
$\mathbf{B_{10}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{8}a \left(4 x_{3} - 1\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{8}a \left(4 x_{3} - 1\right) \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (6e) | Re III |
$\mathbf{B_{11}}$ | = | $- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ | = | $- a \left(x_{3} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (6e) | Re III |
$\mathbf{B_{12}}$ | = | $- x_{3} \, \mathbf{a}_{1}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $- \frac{1}{8}a \left(4 x_{3} + 3\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{24}a \left(12 x_{3} + 1\right) \,\mathbf{\hat{y}}+\frac{5}{12}c \,\mathbf{\hat{z}}$ | (6e) | Re III |
$\mathbf{B_{13}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \frac{1}{8}a \left(4 x_{3} - 1\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{24}a \left(12 x_{3} + 5\right) \,\mathbf{\hat{y}}+\frac{5}{12}c \,\mathbf{\hat{z}}$ | (6e) | Re III |
$\mathbf{B_{14}}$ | = | $\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ | = | $a \left(x_{3} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{5}{12}c \,\mathbf{\hat{z}}$ | (6e) | Re III |
$\mathbf{B_{15}}$ | = | $x_{4} \, \mathbf{a}_{1}- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{8}a \left(4 x_{4} - 1\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{8}a \left(4 x_{4} - 1\right) \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (6e) | Zr I |
$\mathbf{B_{16}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{8}a \left(4 x_{4} - 1\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{8}a \left(4 x_{4} - 1\right) \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (6e) | Zr I |
$\mathbf{B_{17}}$ | = | $- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ | = | $- a \left(x_{4} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (6e) | Zr I |
$\mathbf{B_{18}}$ | = | $- x_{4} \, \mathbf{a}_{1}+\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $- \frac{1}{8}a \left(4 x_{4} + 3\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{24}a \left(12 x_{4} + 1\right) \,\mathbf{\hat{y}}+\frac{5}{12}c \,\mathbf{\hat{z}}$ | (6e) | Zr I |
$\mathbf{B_{19}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \frac{1}{8}a \left(4 x_{4} - 1\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{24}a \left(12 x_{4} + 5\right) \,\mathbf{\hat{y}}+\frac{5}{12}c \,\mathbf{\hat{z}}$ | (6e) | Zr I |
$\mathbf{B_{20}}$ | = | $\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ | = | $a \left(x_{4} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{5}{12}c \,\mathbf{\hat{z}}$ | (6e) | Zr I |
$\mathbf{B_{21}}$ | = | $x_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{5} - z_{5}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{5} - 2 y_{5} + z_{5}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{5} + y_{5} + z_{5}\right) \,\mathbf{\hat{z}}$ | (12f) | Re IV |
$\mathbf{B_{22}}$ | = | $z_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+y_{5} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(y_{5} - z_{5}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(2 x_{5} - y_{5} - z_{5}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{5} + y_{5} + z_{5}\right) \,\mathbf{\hat{z}}$ | (12f) | Re IV |
$\mathbf{B_{23}}$ | = | $y_{5} \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(x_{5} - y_{5}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{5} + y_{5} - 2 z_{5}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{5} + y_{5} + z_{5}\right) \,\mathbf{\hat{z}}$ | (12f) | Re IV |
$\mathbf{B_{24}}$ | = | $- \left(z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{5} - z_{5}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{5} - 2 y_{5} + z_{5}\right) \,\mathbf{\hat{y}}- \frac{1}{6}c \left(2 x_{5} + 2 y_{5} + 2 z_{5} - 3\right) \,\mathbf{\hat{z}}$ | (12f) | Re IV |
$\mathbf{B_{25}}$ | = | $- \left(y_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(y_{5} - z_{5}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(2 x_{5} - y_{5} - z_{5}\right) \,\mathbf{\hat{y}}- \frac{1}{6}c \left(2 x_{5} + 2 y_{5} + 2 z_{5} - 3\right) \,\mathbf{\hat{z}}$ | (12f) | Re IV |
$\mathbf{B_{26}}$ | = | $- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(x_{5} - y_{5}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{5} + y_{5} - 2 z_{5}\right) \,\mathbf{\hat{y}}- \frac{1}{6}c \left(2 x_{5} + 2 y_{5} + 2 z_{5} - 3\right) \,\mathbf{\hat{z}}$ | (12f) | Re IV |
$\mathbf{B_{27}}$ | = | $- x_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(x_{5} - z_{5}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{5} - 2 y_{5} + z_{5}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{5} + y_{5} + z_{5}\right) \,\mathbf{\hat{z}}$ | (12f) | Re IV |
$\mathbf{B_{28}}$ | = | $- z_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}- y_{5} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(y_{5} - z_{5}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(2 x_{5} - y_{5} - z_{5}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{5} + y_{5} + z_{5}\right) \,\mathbf{\hat{z}}$ | (12f) | Re IV |
$\mathbf{B_{29}}$ | = | $- y_{5} \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{5} - y_{5}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{5} + y_{5} - 2 z_{5}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{5} + y_{5} + z_{5}\right) \,\mathbf{\hat{z}}$ | (12f) | Re IV |
$\mathbf{B_{30}}$ | = | $\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(x_{5} - z_{5}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{5} - 2 y_{5} + z_{5}\right) \,\mathbf{\hat{y}}+\frac{1}{6}c \left(2 x_{5} + 2 y_{5} + 2 z_{5} + 3\right) \,\mathbf{\hat{z}}$ | (12f) | Re IV |
$\mathbf{B_{31}}$ | = | $\left(y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(y_{5} - z_{5}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(2 x_{5} - y_{5} - z_{5}\right) \,\mathbf{\hat{y}}+\frac{1}{6}c \left(2 x_{5} + 2 y_{5} + 2 z_{5} + 3\right) \,\mathbf{\hat{z}}$ | (12f) | Re IV |
$\mathbf{B_{32}}$ | = | $\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{5} - y_{5}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{5} + y_{5} - 2 z_{5}\right) \,\mathbf{\hat{y}}+\frac{1}{6}c \left(2 x_{5} + 2 y_{5} + 2 z_{5} + 3\right) \,\mathbf{\hat{z}}$ | (12f) | Re IV |
$\mathbf{B_{33}}$ | = | $x_{6} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{6} - z_{6}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{6} - 2 y_{6} + z_{6}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{6} + y_{6} + z_{6}\right) \,\mathbf{\hat{z}}$ | (12f) | Re V |
$\mathbf{B_{34}}$ | = | $z_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+y_{6} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(y_{6} - z_{6}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(2 x_{6} - y_{6} - z_{6}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{6} + y_{6} + z_{6}\right) \,\mathbf{\hat{z}}$ | (12f) | Re V |
$\mathbf{B_{35}}$ | = | $y_{6} \, \mathbf{a}_{1}+z_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(x_{6} - y_{6}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{6} + y_{6} - 2 z_{6}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{6} + y_{6} + z_{6}\right) \,\mathbf{\hat{z}}$ | (12f) | Re V |
$\mathbf{B_{36}}$ | = | $- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{6} - z_{6}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{6} - 2 y_{6} + z_{6}\right) \,\mathbf{\hat{y}}- \frac{1}{6}c \left(2 x_{6} + 2 y_{6} + 2 z_{6} - 3\right) \,\mathbf{\hat{z}}$ | (12f) | Re V |
$\mathbf{B_{37}}$ | = | $- \left(y_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(y_{6} - z_{6}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(2 x_{6} - y_{6} - z_{6}\right) \,\mathbf{\hat{y}}- \frac{1}{6}c \left(2 x_{6} + 2 y_{6} + 2 z_{6} - 3\right) \,\mathbf{\hat{z}}$ | (12f) | Re V |
$\mathbf{B_{38}}$ | = | $- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(x_{6} - y_{6}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{6} + y_{6} - 2 z_{6}\right) \,\mathbf{\hat{y}}- \frac{1}{6}c \left(2 x_{6} + 2 y_{6} + 2 z_{6} - 3\right) \,\mathbf{\hat{z}}$ | (12f) | Re V |
$\mathbf{B_{39}}$ | = | $- x_{6} \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(x_{6} - z_{6}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{6} - 2 y_{6} + z_{6}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{6} + y_{6} + z_{6}\right) \,\mathbf{\hat{z}}$ | (12f) | Re V |
$\mathbf{B_{40}}$ | = | $- z_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}- y_{6} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(y_{6} - z_{6}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(2 x_{6} - y_{6} - z_{6}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{6} + y_{6} + z_{6}\right) \,\mathbf{\hat{z}}$ | (12f) | Re V |
$\mathbf{B_{41}}$ | = | $- y_{6} \, \mathbf{a}_{1}- z_{6} \, \mathbf{a}_{2}- x_{6} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{6} - y_{6}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{6} + y_{6} - 2 z_{6}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{6} + y_{6} + z_{6}\right) \,\mathbf{\hat{z}}$ | (12f) | Re V |
$\mathbf{B_{42}}$ | = | $\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(x_{6} - z_{6}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{6} - 2 y_{6} + z_{6}\right) \,\mathbf{\hat{y}}+\frac{1}{6}c \left(2 x_{6} + 2 y_{6} + 2 z_{6} + 3\right) \,\mathbf{\hat{z}}$ | (12f) | Re V |
$\mathbf{B_{43}}$ | = | $\left(y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(y_{6} - z_{6}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(2 x_{6} - y_{6} - z_{6}\right) \,\mathbf{\hat{y}}+\frac{1}{6}c \left(2 x_{6} + 2 y_{6} + 2 z_{6} + 3\right) \,\mathbf{\hat{z}}$ | (12f) | Re V |
$\mathbf{B_{44}}$ | = | $\left(x_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{6} - y_{6}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{6} + y_{6} - 2 z_{6}\right) \,\mathbf{\hat{y}}+\frac{1}{6}c \left(2 x_{6} + 2 y_{6} + 2 z_{6} + 3\right) \,\mathbf{\hat{z}}$ | (12f) | Re V |
$\mathbf{B_{45}}$ | = | $x_{7} \, \mathbf{a}_{1}+y_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{7} - 2 y_{7} + z_{7}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{7} + y_{7} + z_{7}\right) \,\mathbf{\hat{z}}$ | (12f) | Re VI |
$\mathbf{B_{46}}$ | = | $z_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+y_{7} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(y_{7} - z_{7}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(2 x_{7} - y_{7} - z_{7}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{7} + y_{7} + z_{7}\right) \,\mathbf{\hat{z}}$ | (12f) | Re VI |
$\mathbf{B_{47}}$ | = | $y_{7} \, \mathbf{a}_{1}+z_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(x_{7} - y_{7}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{7} + y_{7} - 2 z_{7}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{7} + y_{7} + z_{7}\right) \,\mathbf{\hat{z}}$ | (12f) | Re VI |
$\mathbf{B_{48}}$ | = | $- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{7} - 2 y_{7} + z_{7}\right) \,\mathbf{\hat{y}}- \frac{1}{6}c \left(2 x_{7} + 2 y_{7} + 2 z_{7} - 3\right) \,\mathbf{\hat{z}}$ | (12f) | Re VI |
$\mathbf{B_{49}}$ | = | $- \left(y_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(y_{7} - z_{7}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(2 x_{7} - y_{7} - z_{7}\right) \,\mathbf{\hat{y}}- \frac{1}{6}c \left(2 x_{7} + 2 y_{7} + 2 z_{7} - 3\right) \,\mathbf{\hat{z}}$ | (12f) | Re VI |
$\mathbf{B_{50}}$ | = | $- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(x_{7} - y_{7}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{7} + y_{7} - 2 z_{7}\right) \,\mathbf{\hat{y}}- \frac{1}{6}c \left(2 x_{7} + 2 y_{7} + 2 z_{7} - 3\right) \,\mathbf{\hat{z}}$ | (12f) | Re VI |
$\mathbf{B_{51}}$ | = | $- x_{7} \, \mathbf{a}_{1}- y_{7} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{7} - 2 y_{7} + z_{7}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{7} + y_{7} + z_{7}\right) \,\mathbf{\hat{z}}$ | (12f) | Re VI |
$\mathbf{B_{52}}$ | = | $- z_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}- y_{7} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(y_{7} - z_{7}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(2 x_{7} - y_{7} - z_{7}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{7} + y_{7} + z_{7}\right) \,\mathbf{\hat{z}}$ | (12f) | Re VI |
$\mathbf{B_{53}}$ | = | $- y_{7} \, \mathbf{a}_{1}- z_{7} \, \mathbf{a}_{2}- x_{7} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{7} - y_{7}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{7} + y_{7} - 2 z_{7}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{7} + y_{7} + z_{7}\right) \,\mathbf{\hat{z}}$ | (12f) | Re VI |
$\mathbf{B_{54}}$ | = | $\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{7} - 2 y_{7} + z_{7}\right) \,\mathbf{\hat{y}}+\frac{1}{6}c \left(2 x_{7} + 2 y_{7} + 2 z_{7} + 3\right) \,\mathbf{\hat{z}}$ | (12f) | Re VI |
$\mathbf{B_{55}}$ | = | $\left(y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(y_{7} - z_{7}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(2 x_{7} - y_{7} - z_{7}\right) \,\mathbf{\hat{y}}+\frac{1}{6}c \left(2 x_{7} + 2 y_{7} + 2 z_{7} + 3\right) \,\mathbf{\hat{z}}$ | (12f) | Re VI |
$\mathbf{B_{56}}$ | = | $\left(x_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{7} - y_{7}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{7} + y_{7} - 2 z_{7}\right) \,\mathbf{\hat{y}}+\frac{1}{6}c \left(2 x_{7} + 2 y_{7} + 2 z_{7} + 3\right) \,\mathbf{\hat{z}}$ | (12f) | Re VI |
$\mathbf{B_{57}}$ | = | $x_{8} \, \mathbf{a}_{1}+y_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{8} - z_{8}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{8} - 2 y_{8} + z_{8}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{8} + y_{8} + z_{8}\right) \,\mathbf{\hat{z}}$ | (12f) | Zr II |
$\mathbf{B_{58}}$ | = | $z_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}+y_{8} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(y_{8} - z_{8}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(2 x_{8} - y_{8} - z_{8}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{8} + y_{8} + z_{8}\right) \,\mathbf{\hat{z}}$ | (12f) | Zr II |
$\mathbf{B_{59}}$ | = | $y_{8} \, \mathbf{a}_{1}+z_{8} \, \mathbf{a}_{2}+x_{8} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(x_{8} - y_{8}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{8} + y_{8} - 2 z_{8}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{8} + y_{8} + z_{8}\right) \,\mathbf{\hat{z}}$ | (12f) | Zr II |
$\mathbf{B_{60}}$ | = | $- \left(z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{8} - z_{8}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{8} - 2 y_{8} + z_{8}\right) \,\mathbf{\hat{y}}- \frac{1}{6}c \left(2 x_{8} + 2 y_{8} + 2 z_{8} - 3\right) \,\mathbf{\hat{z}}$ | (12f) | Zr II |
$\mathbf{B_{61}}$ | = | $- \left(y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(y_{8} - z_{8}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(2 x_{8} - y_{8} - z_{8}\right) \,\mathbf{\hat{y}}- \frac{1}{6}c \left(2 x_{8} + 2 y_{8} + 2 z_{8} - 3\right) \,\mathbf{\hat{z}}$ | (12f) | Zr II |
$\mathbf{B_{62}}$ | = | $- \left(x_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(x_{8} - y_{8}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{8} + y_{8} - 2 z_{8}\right) \,\mathbf{\hat{y}}- \frac{1}{6}c \left(2 x_{8} + 2 y_{8} + 2 z_{8} - 3\right) \,\mathbf{\hat{z}}$ | (12f) | Zr II |
$\mathbf{B_{63}}$ | = | $- x_{8} \, \mathbf{a}_{1}- y_{8} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(x_{8} - z_{8}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{8} - 2 y_{8} + z_{8}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{8} + y_{8} + z_{8}\right) \,\mathbf{\hat{z}}$ | (12f) | Zr II |
$\mathbf{B_{64}}$ | = | $- z_{8} \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}- y_{8} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(y_{8} - z_{8}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(2 x_{8} - y_{8} - z_{8}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{8} + y_{8} + z_{8}\right) \,\mathbf{\hat{z}}$ | (12f) | Zr II |
$\mathbf{B_{65}}$ | = | $- y_{8} \, \mathbf{a}_{1}- z_{8} \, \mathbf{a}_{2}- x_{8} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{8} - y_{8}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{8} + y_{8} - 2 z_{8}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{8} + y_{8} + z_{8}\right) \,\mathbf{\hat{z}}$ | (12f) | Zr II |
$\mathbf{B_{66}}$ | = | $\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(x_{8} - z_{8}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{8} - 2 y_{8} + z_{8}\right) \,\mathbf{\hat{y}}+\frac{1}{6}c \left(2 x_{8} + 2 y_{8} + 2 z_{8} + 3\right) \,\mathbf{\hat{z}}$ | (12f) | Zr II |
$\mathbf{B_{67}}$ | = | $\left(y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(y_{8} - z_{8}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(2 x_{8} - y_{8} - z_{8}\right) \,\mathbf{\hat{y}}+\frac{1}{6}c \left(2 x_{8} + 2 y_{8} + 2 z_{8} + 3\right) \,\mathbf{\hat{z}}$ | (12f) | Zr II |
$\mathbf{B_{68}}$ | = | $\left(x_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{8} - y_{8}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{8} + y_{8} - 2 z_{8}\right) \,\mathbf{\hat{y}}+\frac{1}{6}c \left(2 x_{8} + 2 y_{8} + 2 z_{8} + 3\right) \,\mathbf{\hat{z}}$ | (12f) | Zr II |
$\mathbf{B_{69}}$ | = | $x_{9} \, \mathbf{a}_{1}+y_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{9} - z_{9}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{9} - 2 y_{9} + z_{9}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{9} + y_{9} + z_{9}\right) \,\mathbf{\hat{z}}$ | (12f) | Zr III |
$\mathbf{B_{70}}$ | = | $z_{9} \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}+y_{9} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(y_{9} - z_{9}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(2 x_{9} - y_{9} - z_{9}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{9} + y_{9} + z_{9}\right) \,\mathbf{\hat{z}}$ | (12f) | Zr III |
$\mathbf{B_{71}}$ | = | $y_{9} \, \mathbf{a}_{1}+z_{9} \, \mathbf{a}_{2}+x_{9} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(x_{9} - y_{9}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{9} + y_{9} - 2 z_{9}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{9} + y_{9} + z_{9}\right) \,\mathbf{\hat{z}}$ | (12f) | Zr III |
$\mathbf{B_{72}}$ | = | $- \left(z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{9} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{9} - z_{9}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{9} - 2 y_{9} + z_{9}\right) \,\mathbf{\hat{y}}- \frac{1}{6}c \left(2 x_{9} + 2 y_{9} + 2 z_{9} - 3\right) \,\mathbf{\hat{z}}$ | (12f) | Zr III |
$\mathbf{B_{73}}$ | = | $- \left(y_{9} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{9} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(y_{9} - z_{9}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(2 x_{9} - y_{9} - z_{9}\right) \,\mathbf{\hat{y}}- \frac{1}{6}c \left(2 x_{9} + 2 y_{9} + 2 z_{9} - 3\right) \,\mathbf{\hat{z}}$ | (12f) | Zr III |
$\mathbf{B_{74}}$ | = | $- \left(x_{9} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(x_{9} - y_{9}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{9} + y_{9} - 2 z_{9}\right) \,\mathbf{\hat{y}}- \frac{1}{6}c \left(2 x_{9} + 2 y_{9} + 2 z_{9} - 3\right) \,\mathbf{\hat{z}}$ | (12f) | Zr III |
$\mathbf{B_{75}}$ | = | $- x_{9} \, \mathbf{a}_{1}- y_{9} \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(x_{9} - z_{9}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{9} - 2 y_{9} + z_{9}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{9} + y_{9} + z_{9}\right) \,\mathbf{\hat{z}}$ | (12f) | Zr III |
$\mathbf{B_{76}}$ | = | $- z_{9} \, \mathbf{a}_{1}- x_{9} \, \mathbf{a}_{2}- y_{9} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(y_{9} - z_{9}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(2 x_{9} - y_{9} - z_{9}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{9} + y_{9} + z_{9}\right) \,\mathbf{\hat{z}}$ | (12f) | Zr III |
$\mathbf{B_{77}}$ | = | $- y_{9} \, \mathbf{a}_{1}- z_{9} \, \mathbf{a}_{2}- x_{9} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{9} - y_{9}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{9} + y_{9} - 2 z_{9}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{9} + y_{9} + z_{9}\right) \,\mathbf{\hat{z}}$ | (12f) | Zr III |
$\mathbf{B_{78}}$ | = | $\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(x_{9} - z_{9}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{9} - 2 y_{9} + z_{9}\right) \,\mathbf{\hat{y}}+\frac{1}{6}c \left(2 x_{9} + 2 y_{9} + 2 z_{9} + 3\right) \,\mathbf{\hat{z}}$ | (12f) | Zr III |
$\mathbf{B_{79}}$ | = | $\left(y_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(y_{9} - z_{9}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(2 x_{9} - y_{9} - z_{9}\right) \,\mathbf{\hat{y}}+\frac{1}{6}c \left(2 x_{9} + 2 y_{9} + 2 z_{9} + 3\right) \,\mathbf{\hat{z}}$ | (12f) | Zr III |
$\mathbf{B_{80}}$ | = | $\left(x_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{9} - y_{9}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{9} + y_{9} - 2 z_{9}\right) \,\mathbf{\hat{y}}+\frac{1}{6}c \left(2 x_{9} + 2 y_{9} + 2 z_{9} + 3\right) \,\mathbf{\hat{z}}$ | (12f) | Zr III |
$\mathbf{B_{81}}$ | = | $x_{10} \, \mathbf{a}_{1}+y_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{10} - z_{10}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{10} - 2 y_{10} + z_{10}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{10} + y_{10} + z_{10}\right) \,\mathbf{\hat{z}}$ | (12f) | Zr IV |
$\mathbf{B_{82}}$ | = | $z_{10} \, \mathbf{a}_{1}+x_{10} \, \mathbf{a}_{2}+y_{10} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(y_{10} - z_{10}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(2 x_{10} - y_{10} - z_{10}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{10} + y_{10} + z_{10}\right) \,\mathbf{\hat{z}}$ | (12f) | Zr IV |
$\mathbf{B_{83}}$ | = | $y_{10} \, \mathbf{a}_{1}+z_{10} \, \mathbf{a}_{2}+x_{10} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(x_{10} - y_{10}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{10} + y_{10} - 2 z_{10}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{10} + y_{10} + z_{10}\right) \,\mathbf{\hat{z}}$ | (12f) | Zr IV |
$\mathbf{B_{84}}$ | = | $- \left(z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{10} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{10} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{10} - z_{10}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{10} - 2 y_{10} + z_{10}\right) \,\mathbf{\hat{y}}- \frac{1}{6}c \left(2 x_{10} + 2 y_{10} + 2 z_{10} - 3\right) \,\mathbf{\hat{z}}$ | (12f) | Zr IV |
$\mathbf{B_{85}}$ | = | $- \left(y_{10} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{10} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(y_{10} - z_{10}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(2 x_{10} - y_{10} - z_{10}\right) \,\mathbf{\hat{y}}- \frac{1}{6}c \left(2 x_{10} + 2 y_{10} + 2 z_{10} - 3\right) \,\mathbf{\hat{z}}$ | (12f) | Zr IV |
$\mathbf{B_{86}}$ | = | $- \left(x_{10} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{10} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(x_{10} - y_{10}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{10} + y_{10} - 2 z_{10}\right) \,\mathbf{\hat{y}}- \frac{1}{6}c \left(2 x_{10} + 2 y_{10} + 2 z_{10} - 3\right) \,\mathbf{\hat{z}}$ | (12f) | Zr IV |
$\mathbf{B_{87}}$ | = | $- x_{10} \, \mathbf{a}_{1}- y_{10} \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(x_{10} - z_{10}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{10} - 2 y_{10} + z_{10}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{10} + y_{10} + z_{10}\right) \,\mathbf{\hat{z}}$ | (12f) | Zr IV |
$\mathbf{B_{88}}$ | = | $- z_{10} \, \mathbf{a}_{1}- x_{10} \, \mathbf{a}_{2}- y_{10} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(y_{10} - z_{10}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(2 x_{10} - y_{10} - z_{10}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{10} + y_{10} + z_{10}\right) \,\mathbf{\hat{z}}$ | (12f) | Zr IV |
$\mathbf{B_{89}}$ | = | $- y_{10} \, \mathbf{a}_{1}- z_{10} \, \mathbf{a}_{2}- x_{10} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{10} - y_{10}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{10} + y_{10} - 2 z_{10}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{10} + y_{10} + z_{10}\right) \,\mathbf{\hat{z}}$ | (12f) | Zr IV |
$\mathbf{B_{90}}$ | = | $\left(z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{10} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(x_{10} - z_{10}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{10} - 2 y_{10} + z_{10}\right) \,\mathbf{\hat{y}}+\frac{1}{6}c \left(2 x_{10} + 2 y_{10} + 2 z_{10} + 3\right) \,\mathbf{\hat{z}}$ | (12f) | Zr IV |
$\mathbf{B_{91}}$ | = | $\left(y_{10} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{10} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(y_{10} - z_{10}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(2 x_{10} - y_{10} - z_{10}\right) \,\mathbf{\hat{y}}+\frac{1}{6}c \left(2 x_{10} + 2 y_{10} + 2 z_{10} + 3\right) \,\mathbf{\hat{z}}$ | (12f) | Zr IV |
$\mathbf{B_{92}}$ | = | $\left(x_{10} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{10} - y_{10}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{10} + y_{10} - 2 z_{10}\right) \,\mathbf{\hat{y}}+\frac{1}{6}c \left(2 x_{10} + 2 y_{10} + 2 z_{10} + 3\right) \,\mathbf{\hat{z}}$ | (12f) | Zr IV |