Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A13B2_hR15_166_a2h_c-001

This structure originally had the label A13B2_hR15_166_b2h_c. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/PZDF
or https://aflow.org/p/A13B2_hR15_166_a2h_c-001
or PDF Version

B$_{13}$C$_{2}$ B$_{4}$C ($D1_{g}$) Structure: A13B2_hR15_166_a2h_c-001

Picture of Structure; Click for Big Picture
Prototype B$_{13}$C$_{2}$
AFLOW prototype label A13B2_hR15_166_a2h_c-001
Strukturbericht designation $D1_{g}$
ICSD 612566
Pearson symbol hR15
Space group number 166
Space group symbol $R\overline{3}m$
AFLOW prototype command aflow --proto=A13B2_hR15_166_a2h_c-001
--params=$a, \allowbreak c/a, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak z_{4}$

Other compounds with this structure

B$_{1-x}$C$_{x}$,  B$_{13}$P$_{2}$,  B$_{4}$Si,  B$_{6}$O


  • This structure has a rather complicated history:
  • It is difficult to determine the species of atoms at a given site because of the similar electronic and nuclear cross sections of $^{11}$B and $^{12}$C (Domnich, 2011).
  • Early investigations (Clark, 1943) assumed the structure was B$_{4}$C, with the extra carbon atom replacing the boron on the (1b) site. [Note that Clark has an error in the coordinates of one set of boron atoms, giving a boron-boron distance of less that 1Å. This error is repeated in (Brandes, 1992) and (Wykcoff, 1964).]
  • In reality, concentrations can range from 8-20% carbon (Domnich, 2011).
  • (Larson, 1986) states that in B$_{13}$C$_{2}$ the (1b) site is boron and as the structure becomes more carbon rich the carbon atoms replace borons in the iscosahedra. We follow this and use the structure determined by (Will, 1976) as our reference.
  • (Lazzari, 1999) states that excess electrons go on the polar sites of the icosahedron, i.e. the sites closest to the carbon atoms on the chains (the B III atoms in our notation).
  • The original version of this page (Hicks, 2021) listed $a = 6.617$\AA{} rather than $a = 5.617$\AA. This has now been corrected.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{\sqrt{3}}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (1a) B I
$\mathbf{B_{2}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $c x_{2} \,\mathbf{\hat{z}}$ (2c) C I
$\mathbf{B_{3}}$ = $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- x_{2} \, \mathbf{a}_{3}$ = $- c x_{2} \,\mathbf{\hat{z}}$ (2c) C I
$\mathbf{B_{4}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{3} - z_{3}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{3} - z_{3}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{3} + z_{3}\right) \,\mathbf{\hat{z}}$ (6h) B II
$\mathbf{B_{5}}$ = $z_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{3} - z_{3}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{3} - z_{3}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{3} + z_{3}\right) \,\mathbf{\hat{z}}$ (6h) B II
$\mathbf{B_{6}}$ = $x_{3} \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $- \frac{1}{\sqrt{3}}a \left(x_{3} - z_{3}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{3} + z_{3}\right) \,\mathbf{\hat{z}}$ (6h) B II
$\mathbf{B_{7}}$ = $- z_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{3} - z_{3}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{3} - z_{3}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{3} + z_{3}\right) \,\mathbf{\hat{z}}$ (6h) B II
$\mathbf{B_{8}}$ = $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{3} - z_{3}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{3} - z_{3}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{3} + z_{3}\right) \,\mathbf{\hat{z}}$ (6h) B II
$\mathbf{B_{9}}$ = $- x_{3} \, \mathbf{a}_{1}- z_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $\frac{1}{\sqrt{3}}a \left(x_{3} - z_{3}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{3} + z_{3}\right) \,\mathbf{\hat{z}}$ (6h) B II
$\mathbf{B_{10}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{4} - z_{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{4} - z_{4}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{4} + z_{4}\right) \,\mathbf{\hat{z}}$ (6h) B III
$\mathbf{B_{11}}$ = $z_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{4} - z_{4}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{4} - z_{4}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{4} + z_{4}\right) \,\mathbf{\hat{z}}$ (6h) B III
$\mathbf{B_{12}}$ = $x_{4} \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $- \frac{1}{\sqrt{3}}a \left(x_{4} - z_{4}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{4} + z_{4}\right) \,\mathbf{\hat{z}}$ (6h) B III
$\mathbf{B_{13}}$ = $- z_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{4} - z_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{4} - z_{4}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{4} + z_{4}\right) \,\mathbf{\hat{z}}$ (6h) B III
$\mathbf{B_{14}}$ = $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{4} - z_{4}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{4} - z_{4}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{4} + z_{4}\right) \,\mathbf{\hat{z}}$ (6h) B III
$\mathbf{B_{15}}$ = $- x_{4} \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $\frac{1}{\sqrt{3}}a \left(x_{4} - z_{4}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(2 x_{4} + z_{4}\right) \,\mathbf{\hat{z}}$ (6h) B III

References

  • G. Will and K. H. Kossobutzki, An X-ray structure analysis of boron carbide, B$_{13}$C$_{2}$, J. Less-Common Met. 44, 87–97 (1976), doi:10.1016/0022-5088(76)90120-X.
  • V. Domnich, S. Reynaud, R. A. Haber, and M. Chhowalla, Boron Carbide: Structure, Properties, and Stability under Stress, J. Am. Ceram. Soc. 94, 3605–3628 (2011), doi:10.1111/j.1551-2916.2011.04865.x.
  • H. K. Clark and J. L. Hoard, The Crystal Structure of Boron Carbide}, J. Am. Chem. Soc. 65, 2115–2119 (1943), doi:10.1021/ja01251a026. {\em errata}, H. K. Clark and J. L. Hoard, J. Am. Chem. Soc. 67, 2279 (1945).
  • \bibitem{brandes92:SmithellsE. A. Brandes and G. B. Brook, eds., Smithells Metals Reference Book} (Butterworth Heinemann, Oxford, Auckland, Boston, Johannesburg, Melbourne, New Delhi, 1992), seventh edn.\bibAnnoteFile{brandes92:Smithells
  • R. W. G. Wyckoff, Crystal Structures, vol. 2 (Interscience (John Wiley & Sons), New York, London, Sydney, 1964), second edn.
  • A. C. Larson, Comments concerning the crystal structure of B$_{4}$C, AIP Conf. Proc. 140, 109–113 (1986), doi:10.1063/1.35619.
  • R. Lazzari, N. Vast, J. M. Besson, S. Baroni, and A. D. Corso, Atomic Structure and Vibrational Properties of Icosahedral B$_{4}$C Boron Carbide}, Phys. Rev. Lett. 83, 3230–3233 (1999), doi:10.1103/PhysRevLett.83.3230. {\em erratum Phys. Rev. Lett. 85, 4194 (2000).
  • D. Hicks, M. J.Mehl, M. Esters, C. Oses, O. Levy, G. L. W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comput. Mater. Sci. 199, 110450 (2021), doi:10.1016/j.commatsci.2021.110450.

Prototype Generator

aflow --proto=A13B2_hR15_166_a2h_c --params=$a,c/a,x_{2},x_{3},z_{3},x_{4},z_{4}$

Species:

Running:

Output: