AFLOW Prototype: A11BC9_oI84_45_a5c_a_b4c-001
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/DZ16
or
https://aflow.org/p/A11BC9_oI84_45_a5c_a_b4c-001
or
PDF Version
Prototype | Ca$_{11}$InSb$_{9}$ |
AFLOW prototype label | A11BC9_oI84_45_a5c_a_b4c-001 |
ICSD | 42371 |
Pearson symbol | oI84 |
Space group number | 45 |
Space group symbol | $Iba2$ |
AFLOW prototype command |
aflow --proto=A11BC9_oI84_45_a5c_a_b4c-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak z_{1}, \allowbreak z_{2}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak y_{4}, \allowbreak z_{4}, \allowbreak x_{5}, \allowbreak y_{5}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak y_{6}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak y_{7}, \allowbreak z_{7}, \allowbreak x_{8}, \allowbreak y_{8}, \allowbreak z_{8}, \allowbreak x_{9}, \allowbreak y_{9}, \allowbreak z_{9}, \allowbreak x_{10}, \allowbreak y_{10}, \allowbreak z_{10}, \allowbreak x_{11}, \allowbreak y_{11}, \allowbreak z_{11}, \allowbreak x_{12}, \allowbreak y_{12}, \allowbreak z_{12}$ |
Ca$_{11}$AlSb$_{9}$, Ca$_{11}$GaSb$_{9}$, Eu$_{11}$InSb$_{9}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $z_{1} \, \mathbf{a}_{1}+z_{1} \, \mathbf{a}_{2}$ | = | $c z_{1} \,\mathbf{\hat{z}}$ | (4a) | Ca I |
$\mathbf{B_{2}}$ | = | $\left(z_{1} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{1} + \frac{1}{2}\right) \, \mathbf{a}_{2}$ | = | $c \left(z_{1} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (4a) | Ca I |
$\mathbf{B_{3}}$ | = | $z_{2} \, \mathbf{a}_{1}+z_{2} \, \mathbf{a}_{2}$ | = | $c z_{2} \,\mathbf{\hat{z}}$ | (4a) | In I |
$\mathbf{B_{4}}$ | = | $\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}$ | = | $c \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (4a) | In I |
$\mathbf{B_{5}}$ | = | $\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}b \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ | (4b) | Sb I |
$\mathbf{B_{6}}$ | = | $z_{3} \, \mathbf{a}_{1}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+c z_{3} \,\mathbf{\hat{z}}$ | (4b) | Sb I |
$\mathbf{B_{7}}$ | = | $\left(y_{4} + z_{4}\right) \, \mathbf{a}_{1}+\left(x_{4} + z_{4}\right) \, \mathbf{a}_{2}+\left(x_{4} + y_{4}\right) \, \mathbf{a}_{3}$ | = | $a x_{4} \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ | (8c) | Ca II |
$\mathbf{B_{8}}$ | = | $- \left(y_{4} - z_{4}\right) \, \mathbf{a}_{1}- \left(x_{4} - z_{4}\right) \, \mathbf{a}_{2}- \left(x_{4} + y_{4}\right) \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{x}}- b y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ | (8c) | Ca II |
$\mathbf{B_{9}}$ | = | $\left(- y_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{4} - y_{4}\right) \, \mathbf{a}_{3}$ | = | $a x_{4} \,\mathbf{\hat{x}}- b y_{4} \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (8c) | Ca II |
$\mathbf{B_{10}}$ | = | $\left(y_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{4} - y_{4}\right) \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (8c) | Ca II |
$\mathbf{B_{11}}$ | = | $\left(y_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} + z_{5}\right) \, \mathbf{a}_{2}+\left(x_{5} + y_{5}\right) \, \mathbf{a}_{3}$ | = | $a x_{5} \,\mathbf{\hat{x}}+b y_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ | (8c) | Ca III |
$\mathbf{B_{12}}$ | = | $- \left(y_{5} - z_{5}\right) \, \mathbf{a}_{1}- \left(x_{5} - z_{5}\right) \, \mathbf{a}_{2}- \left(x_{5} + y_{5}\right) \, \mathbf{a}_{3}$ | = | $- a x_{5} \,\mathbf{\hat{x}}- b y_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ | (8c) | Ca III |
$\mathbf{B_{13}}$ | = | $\left(- y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{5} - y_{5}\right) \, \mathbf{a}_{3}$ | = | $a x_{5} \,\mathbf{\hat{x}}- b y_{5} \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (8c) | Ca III |
$\mathbf{B_{14}}$ | = | $\left(y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{5} - y_{5}\right) \, \mathbf{a}_{3}$ | = | $- a x_{5} \,\mathbf{\hat{x}}+b y_{5} \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (8c) | Ca III |
$\mathbf{B_{15}}$ | = | $\left(y_{6} + z_{6}\right) \, \mathbf{a}_{1}+\left(x_{6} + z_{6}\right) \, \mathbf{a}_{2}+\left(x_{6} + y_{6}\right) \, \mathbf{a}_{3}$ | = | $a x_{6} \,\mathbf{\hat{x}}+b y_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ | (8c) | Ca IV |
$\mathbf{B_{16}}$ | = | $- \left(y_{6} - z_{6}\right) \, \mathbf{a}_{1}- \left(x_{6} - z_{6}\right) \, \mathbf{a}_{2}- \left(x_{6} + y_{6}\right) \, \mathbf{a}_{3}$ | = | $- a x_{6} \,\mathbf{\hat{x}}- b y_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ | (8c) | Ca IV |
$\mathbf{B_{17}}$ | = | $\left(- y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{6} - y_{6}\right) \, \mathbf{a}_{3}$ | = | $a x_{6} \,\mathbf{\hat{x}}- b y_{6} \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (8c) | Ca IV |
$\mathbf{B_{18}}$ | = | $\left(y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{6} - y_{6}\right) \, \mathbf{a}_{3}$ | = | $- a x_{6} \,\mathbf{\hat{x}}+b y_{6} \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (8c) | Ca IV |
$\mathbf{B_{19}}$ | = | $\left(y_{7} + z_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} + z_{7}\right) \, \mathbf{a}_{2}+\left(x_{7} + y_{7}\right) \, \mathbf{a}_{3}$ | = | $a x_{7} \,\mathbf{\hat{x}}+b y_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ | (8c) | Ca V |
$\mathbf{B_{20}}$ | = | $- \left(y_{7} - z_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} - z_{7}\right) \, \mathbf{a}_{2}- \left(x_{7} + y_{7}\right) \, \mathbf{a}_{3}$ | = | $- a x_{7} \,\mathbf{\hat{x}}- b y_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ | (8c) | Ca V |
$\mathbf{B_{21}}$ | = | $\left(- y_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{7} - y_{7}\right) \, \mathbf{a}_{3}$ | = | $a x_{7} \,\mathbf{\hat{x}}- b y_{7} \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (8c) | Ca V |
$\mathbf{B_{22}}$ | = | $\left(y_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{7} - y_{7}\right) \, \mathbf{a}_{3}$ | = | $- a x_{7} \,\mathbf{\hat{x}}+b y_{7} \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (8c) | Ca V |
$\mathbf{B_{23}}$ | = | $\left(y_{8} + z_{8}\right) \, \mathbf{a}_{1}+\left(x_{8} + z_{8}\right) \, \mathbf{a}_{2}+\left(x_{8} + y_{8}\right) \, \mathbf{a}_{3}$ | = | $a x_{8} \,\mathbf{\hat{x}}+b y_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ | (8c) | Ca VI |
$\mathbf{B_{24}}$ | = | $- \left(y_{8} - z_{8}\right) \, \mathbf{a}_{1}- \left(x_{8} - z_{8}\right) \, \mathbf{a}_{2}- \left(x_{8} + y_{8}\right) \, \mathbf{a}_{3}$ | = | $- a x_{8} \,\mathbf{\hat{x}}- b y_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ | (8c) | Ca VI |
$\mathbf{B_{25}}$ | = | $\left(- y_{8} + z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{8} + z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{8} - y_{8}\right) \, \mathbf{a}_{3}$ | = | $a x_{8} \,\mathbf{\hat{x}}- b y_{8} \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (8c) | Ca VI |
$\mathbf{B_{26}}$ | = | $\left(y_{8} + z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{8} + z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{8} - y_{8}\right) \, \mathbf{a}_{3}$ | = | $- a x_{8} \,\mathbf{\hat{x}}+b y_{8} \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (8c) | Ca VI |
$\mathbf{B_{27}}$ | = | $\left(y_{9} + z_{9}\right) \, \mathbf{a}_{1}+\left(x_{9} + z_{9}\right) \, \mathbf{a}_{2}+\left(x_{9} + y_{9}\right) \, \mathbf{a}_{3}$ | = | $a x_{9} \,\mathbf{\hat{x}}+b y_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ | (8c) | Sb II |
$\mathbf{B_{28}}$ | = | $- \left(y_{9} - z_{9}\right) \, \mathbf{a}_{1}- \left(x_{9} - z_{9}\right) \, \mathbf{a}_{2}- \left(x_{9} + y_{9}\right) \, \mathbf{a}_{3}$ | = | $- a x_{9} \,\mathbf{\hat{x}}- b y_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ | (8c) | Sb II |
$\mathbf{B_{29}}$ | = | $\left(- y_{9} + z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{9} + z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{9} - y_{9}\right) \, \mathbf{a}_{3}$ | = | $a x_{9} \,\mathbf{\hat{x}}- b y_{9} \,\mathbf{\hat{y}}+c \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (8c) | Sb II |
$\mathbf{B_{30}}$ | = | $\left(y_{9} + z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{9} + z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{9} - y_{9}\right) \, \mathbf{a}_{3}$ | = | $- a x_{9} \,\mathbf{\hat{x}}+b y_{9} \,\mathbf{\hat{y}}+c \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (8c) | Sb II |
$\mathbf{B_{31}}$ | = | $\left(y_{10} + z_{10}\right) \, \mathbf{a}_{1}+\left(x_{10} + z_{10}\right) \, \mathbf{a}_{2}+\left(x_{10} + y_{10}\right) \, \mathbf{a}_{3}$ | = | $a x_{10} \,\mathbf{\hat{x}}+b y_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ | (8c) | Sb III |
$\mathbf{B_{32}}$ | = | $- \left(y_{10} - z_{10}\right) \, \mathbf{a}_{1}- \left(x_{10} - z_{10}\right) \, \mathbf{a}_{2}- \left(x_{10} + y_{10}\right) \, \mathbf{a}_{3}$ | = | $- a x_{10} \,\mathbf{\hat{x}}- b y_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ | (8c) | Sb III |
$\mathbf{B_{33}}$ | = | $\left(- y_{10} + z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{10} + z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{10} - y_{10}\right) \, \mathbf{a}_{3}$ | = | $a x_{10} \,\mathbf{\hat{x}}- b y_{10} \,\mathbf{\hat{y}}+c \left(z_{10} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (8c) | Sb III |
$\mathbf{B_{34}}$ | = | $\left(y_{10} + z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{10} + z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{10} - y_{10}\right) \, \mathbf{a}_{3}$ | = | $- a x_{10} \,\mathbf{\hat{x}}+b y_{10} \,\mathbf{\hat{y}}+c \left(z_{10} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (8c) | Sb III |
$\mathbf{B_{35}}$ | = | $\left(y_{11} + z_{11}\right) \, \mathbf{a}_{1}+\left(x_{11} + z_{11}\right) \, \mathbf{a}_{2}+\left(x_{11} + y_{11}\right) \, \mathbf{a}_{3}$ | = | $a x_{11} \,\mathbf{\hat{x}}+b y_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ | (8c) | Sb IV |
$\mathbf{B_{36}}$ | = | $- \left(y_{11} - z_{11}\right) \, \mathbf{a}_{1}- \left(x_{11} - z_{11}\right) \, \mathbf{a}_{2}- \left(x_{11} + y_{11}\right) \, \mathbf{a}_{3}$ | = | $- a x_{11} \,\mathbf{\hat{x}}- b y_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ | (8c) | Sb IV |
$\mathbf{B_{37}}$ | = | $\left(- y_{11} + z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{11} + z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{11} - y_{11}\right) \, \mathbf{a}_{3}$ | = | $a x_{11} \,\mathbf{\hat{x}}- b y_{11} \,\mathbf{\hat{y}}+c \left(z_{11} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (8c) | Sb IV |
$\mathbf{B_{38}}$ | = | $\left(y_{11} + z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{11} + z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{11} - y_{11}\right) \, \mathbf{a}_{3}$ | = | $- a x_{11} \,\mathbf{\hat{x}}+b y_{11} \,\mathbf{\hat{y}}+c \left(z_{11} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (8c) | Sb IV |
$\mathbf{B_{39}}$ | = | $\left(y_{12} + z_{12}\right) \, \mathbf{a}_{1}+\left(x_{12} + z_{12}\right) \, \mathbf{a}_{2}+\left(x_{12} + y_{12}\right) \, \mathbf{a}_{3}$ | = | $a x_{12} \,\mathbf{\hat{x}}+b y_{12} \,\mathbf{\hat{y}}+c z_{12} \,\mathbf{\hat{z}}$ | (8c) | Sb V |
$\mathbf{B_{40}}$ | = | $- \left(y_{12} - z_{12}\right) \, \mathbf{a}_{1}- \left(x_{12} - z_{12}\right) \, \mathbf{a}_{2}- \left(x_{12} + y_{12}\right) \, \mathbf{a}_{3}$ | = | $- a x_{12} \,\mathbf{\hat{x}}- b y_{12} \,\mathbf{\hat{y}}+c z_{12} \,\mathbf{\hat{z}}$ | (8c) | Sb V |
$\mathbf{B_{41}}$ | = | $\left(- y_{12} + z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{12} + z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{12} - y_{12}\right) \, \mathbf{a}_{3}$ | = | $a x_{12} \,\mathbf{\hat{x}}- b y_{12} \,\mathbf{\hat{y}}+c \left(z_{12} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (8c) | Sb V |
$\mathbf{B_{42}}$ | = | $\left(y_{12} + z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{12} + z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{12} - y_{12}\right) \, \mathbf{a}_{3}$ | = | $- a x_{12} \,\mathbf{\hat{x}}+b y_{12} \,\mathbf{\hat{y}}+c \left(z_{12} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (8c) | Sb V |