Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A11BC9_oI84_45_a5c_a_b4c-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/DZ16
or https://aflow.org/p/A11BC9_oI84_45_a5c_a_b4c-001
or PDF Version

Ca$_{11}$InSb$_{9}$ Structure: A11BC9_oI84_45_a5c_a_b4c-001

Picture of Structure; Click for Big Picture
Prototype Ca$_{11}$InSb$_{9}$
AFLOW prototype label A11BC9_oI84_45_a5c_a_b4c-001
ICSD 42371
Pearson symbol oI84
Space group number 45
Space group symbol $Iba2$
AFLOW prototype command aflow --proto=A11BC9_oI84_45_a5c_a_b4c-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak z_{1}, \allowbreak z_{2}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak y_{4}, \allowbreak z_{4}, \allowbreak x_{5}, \allowbreak y_{5}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak y_{6}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak y_{7}, \allowbreak z_{7}, \allowbreak x_{8}, \allowbreak y_{8}, \allowbreak z_{8}, \allowbreak x_{9}, \allowbreak y_{9}, \allowbreak z_{9}, \allowbreak x_{10}, \allowbreak y_{10}, \allowbreak z_{10}, \allowbreak x_{11}, \allowbreak y_{11}, \allowbreak z_{11}, \allowbreak x_{12}, \allowbreak y_{12}, \allowbreak z_{12}$

Other compounds with this structure

Ca$_{11}$AlSb$_{9}$,  Ca$_{11}$GaSb$_{9}$,  Eu$_{11}$InSb$_{9}$


  • Space group $Iba2$ #45 allows an arbitrary placement of the $z$-axis origin. Here we chose it so that $z_{9} = 1/2$ for the Sb-II site.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}b \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}- \frac{1}{2}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $z_{1} \, \mathbf{a}_{1}+z_{1} \, \mathbf{a}_{2}$ = $c z_{1} \,\mathbf{\hat{z}}$ (4a) Ca I
$\mathbf{B_{2}}$ = $\left(z_{1} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{1} + \frac{1}{2}\right) \, \mathbf{a}_{2}$ = $c \left(z_{1} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4a) Ca I
$\mathbf{B_{3}}$ = $z_{2} \, \mathbf{a}_{1}+z_{2} \, \mathbf{a}_{2}$ = $c z_{2} \,\mathbf{\hat{z}}$ (4a) In I
$\mathbf{B_{4}}$ = $\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}$ = $c \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4a) In I
$\mathbf{B_{5}}$ = $\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}b \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (4b) Sb I
$\mathbf{B_{6}}$ = $z_{3} \, \mathbf{a}_{1}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+c z_{3} \,\mathbf{\hat{z}}$ (4b) Sb I
$\mathbf{B_{7}}$ = $\left(y_{4} + z_{4}\right) \, \mathbf{a}_{1}+\left(x_{4} + z_{4}\right) \, \mathbf{a}_{2}+\left(x_{4} + y_{4}\right) \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (8c) Ca II
$\mathbf{B_{8}}$ = $- \left(y_{4} - z_{4}\right) \, \mathbf{a}_{1}- \left(x_{4} - z_{4}\right) \, \mathbf{a}_{2}- \left(x_{4} + y_{4}\right) \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}- b y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (8c) Ca II
$\mathbf{B_{9}}$ = $\left(- y_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{4} - y_{4}\right) \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}- b y_{4} \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) Ca II
$\mathbf{B_{10}}$ = $\left(y_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{4} - y_{4}\right) \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) Ca II
$\mathbf{B_{11}}$ = $\left(y_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} + z_{5}\right) \, \mathbf{a}_{2}+\left(x_{5} + y_{5}\right) \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+b y_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (8c) Ca III
$\mathbf{B_{12}}$ = $- \left(y_{5} - z_{5}\right) \, \mathbf{a}_{1}- \left(x_{5} - z_{5}\right) \, \mathbf{a}_{2}- \left(x_{5} + y_{5}\right) \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}- b y_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (8c) Ca III
$\mathbf{B_{13}}$ = $\left(- y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{5} - y_{5}\right) \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}- b y_{5} \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) Ca III
$\mathbf{B_{14}}$ = $\left(y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{5} - y_{5}\right) \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}+b y_{5} \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) Ca III
$\mathbf{B_{15}}$ = $\left(y_{6} + z_{6}\right) \, \mathbf{a}_{1}+\left(x_{6} + z_{6}\right) \, \mathbf{a}_{2}+\left(x_{6} + y_{6}\right) \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}+b y_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (8c) Ca IV
$\mathbf{B_{16}}$ = $- \left(y_{6} - z_{6}\right) \, \mathbf{a}_{1}- \left(x_{6} - z_{6}\right) \, \mathbf{a}_{2}- \left(x_{6} + y_{6}\right) \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}- b y_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (8c) Ca IV
$\mathbf{B_{17}}$ = $\left(- y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{6} - y_{6}\right) \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}- b y_{6} \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) Ca IV
$\mathbf{B_{18}}$ = $\left(y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{6} - y_{6}\right) \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}+b y_{6} \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) Ca IV
$\mathbf{B_{19}}$ = $\left(y_{7} + z_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} + z_{7}\right) \, \mathbf{a}_{2}+\left(x_{7} + y_{7}\right) \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}+b y_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (8c) Ca V
$\mathbf{B_{20}}$ = $- \left(y_{7} - z_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} - z_{7}\right) \, \mathbf{a}_{2}- \left(x_{7} + y_{7}\right) \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}- b y_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (8c) Ca V
$\mathbf{B_{21}}$ = $\left(- y_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{7} - y_{7}\right) \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}- b y_{7} \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) Ca V
$\mathbf{B_{22}}$ = $\left(y_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{7} - y_{7}\right) \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}+b y_{7} \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) Ca V
$\mathbf{B_{23}}$ = $\left(y_{8} + z_{8}\right) \, \mathbf{a}_{1}+\left(x_{8} + z_{8}\right) \, \mathbf{a}_{2}+\left(x_{8} + y_{8}\right) \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}+b y_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (8c) Ca VI
$\mathbf{B_{24}}$ = $- \left(y_{8} - z_{8}\right) \, \mathbf{a}_{1}- \left(x_{8} - z_{8}\right) \, \mathbf{a}_{2}- \left(x_{8} + y_{8}\right) \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}- b y_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (8c) Ca VI
$\mathbf{B_{25}}$ = $\left(- y_{8} + z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{8} + z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{8} - y_{8}\right) \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}- b y_{8} \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) Ca VI
$\mathbf{B_{26}}$ = $\left(y_{8} + z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{8} + z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{8} - y_{8}\right) \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}+b y_{8} \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) Ca VI
$\mathbf{B_{27}}$ = $\left(y_{9} + z_{9}\right) \, \mathbf{a}_{1}+\left(x_{9} + z_{9}\right) \, \mathbf{a}_{2}+\left(x_{9} + y_{9}\right) \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{x}}+b y_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (8c) Sb II
$\mathbf{B_{28}}$ = $- \left(y_{9} - z_{9}\right) \, \mathbf{a}_{1}- \left(x_{9} - z_{9}\right) \, \mathbf{a}_{2}- \left(x_{9} + y_{9}\right) \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{x}}- b y_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (8c) Sb II
$\mathbf{B_{29}}$ = $\left(- y_{9} + z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{9} + z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{9} - y_{9}\right) \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{x}}- b y_{9} \,\mathbf{\hat{y}}+c \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) Sb II
$\mathbf{B_{30}}$ = $\left(y_{9} + z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{9} + z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{9} - y_{9}\right) \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{x}}+b y_{9} \,\mathbf{\hat{y}}+c \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) Sb II
$\mathbf{B_{31}}$ = $\left(y_{10} + z_{10}\right) \, \mathbf{a}_{1}+\left(x_{10} + z_{10}\right) \, \mathbf{a}_{2}+\left(x_{10} + y_{10}\right) \, \mathbf{a}_{3}$ = $a x_{10} \,\mathbf{\hat{x}}+b y_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (8c) Sb III
$\mathbf{B_{32}}$ = $- \left(y_{10} - z_{10}\right) \, \mathbf{a}_{1}- \left(x_{10} - z_{10}\right) \, \mathbf{a}_{2}- \left(x_{10} + y_{10}\right) \, \mathbf{a}_{3}$ = $- a x_{10} \,\mathbf{\hat{x}}- b y_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (8c) Sb III
$\mathbf{B_{33}}$ = $\left(- y_{10} + z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{10} + z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{10} - y_{10}\right) \, \mathbf{a}_{3}$ = $a x_{10} \,\mathbf{\hat{x}}- b y_{10} \,\mathbf{\hat{y}}+c \left(z_{10} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) Sb III
$\mathbf{B_{34}}$ = $\left(y_{10} + z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{10} + z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{10} - y_{10}\right) \, \mathbf{a}_{3}$ = $- a x_{10} \,\mathbf{\hat{x}}+b y_{10} \,\mathbf{\hat{y}}+c \left(z_{10} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) Sb III
$\mathbf{B_{35}}$ = $\left(y_{11} + z_{11}\right) \, \mathbf{a}_{1}+\left(x_{11} + z_{11}\right) \, \mathbf{a}_{2}+\left(x_{11} + y_{11}\right) \, \mathbf{a}_{3}$ = $a x_{11} \,\mathbf{\hat{x}}+b y_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ (8c) Sb IV
$\mathbf{B_{36}}$ = $- \left(y_{11} - z_{11}\right) \, \mathbf{a}_{1}- \left(x_{11} - z_{11}\right) \, \mathbf{a}_{2}- \left(x_{11} + y_{11}\right) \, \mathbf{a}_{3}$ = $- a x_{11} \,\mathbf{\hat{x}}- b y_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ (8c) Sb IV
$\mathbf{B_{37}}$ = $\left(- y_{11} + z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{11} + z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{11} - y_{11}\right) \, \mathbf{a}_{3}$ = $a x_{11} \,\mathbf{\hat{x}}- b y_{11} \,\mathbf{\hat{y}}+c \left(z_{11} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) Sb IV
$\mathbf{B_{38}}$ = $\left(y_{11} + z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{11} + z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{11} - y_{11}\right) \, \mathbf{a}_{3}$ = $- a x_{11} \,\mathbf{\hat{x}}+b y_{11} \,\mathbf{\hat{y}}+c \left(z_{11} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) Sb IV
$\mathbf{B_{39}}$ = $\left(y_{12} + z_{12}\right) \, \mathbf{a}_{1}+\left(x_{12} + z_{12}\right) \, \mathbf{a}_{2}+\left(x_{12} + y_{12}\right) \, \mathbf{a}_{3}$ = $a x_{12} \,\mathbf{\hat{x}}+b y_{12} \,\mathbf{\hat{y}}+c z_{12} \,\mathbf{\hat{z}}$ (8c) Sb V
$\mathbf{B_{40}}$ = $- \left(y_{12} - z_{12}\right) \, \mathbf{a}_{1}- \left(x_{12} - z_{12}\right) \, \mathbf{a}_{2}- \left(x_{12} + y_{12}\right) \, \mathbf{a}_{3}$ = $- a x_{12} \,\mathbf{\hat{x}}- b y_{12} \,\mathbf{\hat{y}}+c z_{12} \,\mathbf{\hat{z}}$ (8c) Sb V
$\mathbf{B_{41}}$ = $\left(- y_{12} + z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{12} + z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{12} - y_{12}\right) \, \mathbf{a}_{3}$ = $a x_{12} \,\mathbf{\hat{x}}- b y_{12} \,\mathbf{\hat{y}}+c \left(z_{12} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) Sb V
$\mathbf{B_{42}}$ = $\left(y_{12} + z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{12} + z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{12} - y_{12}\right) \, \mathbf{a}_{3}$ = $- a x_{12} \,\mathbf{\hat{x}}+b y_{12} \,\mathbf{\hat{y}}+c \left(z_{12} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) Sb V

References

  • G. Cordier, H. Schäfer, and M. Stelter, Ca$_{11}$InSb$_{9}$, eine Zintlphase mit diskreten InSb$_{4}^{9-}\cdot$Anionen, Z. Naturforsch. B 40, 868–871 (1985), doi:10.1515/znb-1985-0703.

Prototype Generator

aflow --proto=A11BC9_oI84_45_a5c_a_b4c --params=$a,b/a,c/a,z_{1},z_{2},z_{3},x_{4},y_{4},z_{4},x_{5},y_{5},z_{5},x_{6},y_{6},z_{6},x_{7},y_{7},z_{7},x_{8},y_{8},z_{8},x_{9},y_{9},z_{9},x_{10},y_{10},z_{10},x_{11},y_{11},z_{11},x_{12},y_{12},z_{12}$

Species:

Running:

Output: