Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A4B2C_tP14_136_i_f_a-001

This structure originally had the label A4B2C_tP14_136_i_g_b. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/U6YK
or https://aflow.org/p/A4B2C_tP14_136_i_f_a-001
or PDF Version

ZrFe$_{4}$Si$_{2}$ Structure: A4B2C_tP14_136_i_f_a-001

Picture of Structure; Click for Big Picture
Prototype Fe$_{4}$Si$_{2}$Zr
AFLOW prototype label A4B2C_tP14_136_i_f_a-001
ICSD 87172
Pearson symbol tP14
Space group number 136
Space group symbol $P4_2/mnm$
AFLOW prototype command aflow --proto=A4B2C_tP14_136_i_f_a-001
--params=$a, \allowbreak c/a, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak y_{3}$

Other compounds with this structure

BaCd$_{4}$Pt$_{2}$,  DyFe$_{4}$Ge$_{2}$,  DyNi$_{4}$As$_{2}$,  ErFe$_{4}$Ge$_{2}$,  ErNi$_{4}$P$_{2}$,  GdNi$_{4}$As$_{2}$,  GdRe$_{4}$Si$_{2}$,  HoFe$_{4}$Ge$_{2}$,  LuFe$_{4}$Ge$_{2}$,  LuNi$_{4}$As$_{2}$,  LuRe$_{4}$Si$_{2}$,  ScFe$_{4}$P$_{2}$,  ScFe$_{4}$Si$_{2}$,  ScNi$_{4}$As$_{2}$,  SmRe$_{4}$Si$_{2}$,  SrCd$_{4}$Pt$_{2}$,  TbRe$_{4}$Si$_{2}$,  TmFe$_{4}$Ge$_{2}$,  TmRe$_{4}$Si$_{2}$,  UMn$_{4}$P$_{2}$,  YFe$_{4}$Ge$_{2}$,  YNi$_{4}$As$_{2}$,  YNi$_{4}$P$_{2}$,  YRe$_{4}$Si$_{2}$,  YbNi$_{4}$P$_{2}$,  ZrFe$_{4}$P$_{2}$,  ZrNi$_{4}$As$_{2}$


\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (2a) Zr I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (2a) Zr I
$\mathbf{B_{3}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}$ = $a x_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}$ (4f) Si I
$\mathbf{B_{4}}$ = $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}$ = $- a x_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}$ (4f) Si I
$\mathbf{B_{5}}$ = $- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4f) Si I
$\mathbf{B_{6}}$ = $\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4f) Si I
$\mathbf{B_{7}}$ = $x_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}$ = $a x_{3} \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{y}}$ (8i) Fe I
$\mathbf{B_{8}}$ = $- x_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}$ = $- a x_{3} \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{y}}$ (8i) Fe I
$\mathbf{B_{9}}$ = $- \left(y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (8i) Fe I
$\mathbf{B_{10}}$ = $\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (8i) Fe I
$\mathbf{B_{11}}$ = $- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (8i) Fe I
$\mathbf{B_{12}}$ = $\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (8i) Fe I
$\mathbf{B_{13}}$ = $y_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}$ = $a y_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}$ (8i) Fe I
$\mathbf{B_{14}}$ = $- y_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}$ = $- a y_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}$ (8i) Fe I

References

  • Y. P. Yarmolyuk, L. A. Lysenko, and E. I. Gladyshevsky, Crystal Structure of ZrFe$_{4}$Si$_{2}$ – A New Structure Type of Ternary Silicides, Dopov. Akad. Nauk Ukr. RSR, Ser. A 37, 281–284 (1975). In Russian.

Found in

  • P. Schobinger-Papamantellos, J. Rodrı́guez-Carvajal, G. André, N. P. Duong, K. H. J. Buschow, and P. Tolédano, Simultaneous structural and magnetic transitions in YFe$_{4}$Ge$_{2}$ studied by neutron diffraction and magnetic measurements, J. Magn. Magn. Mater. 236, 14–27 (2001), doi:10.1016/S0304-8853(01)00442-5.

Prototype Generator

aflow --proto=A4B2C_tP14_136_i_f_a --params=$a,c/a,x_{2},x_{3},y_{3}$

Species:

Running:

Output: