 
        AFLOW Prototype: AB6C_tP16_132_b_io_c-001
This structure originally had the label AB6C_tP16_132_d_io_a. Calls to that address will be redirected here.
		    If you are using this page, please cite: 
		    
		    
		    D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)
		  
Links to this page
		    https://aflow.org/p/U3ZM
		  
		  or
		
		
		https://aflow.org/p/AB6C_tP16_132_b_io_c-001
		
		or
		
		 PDF Version
| Prototype | AgF$_{6}$U | 
| AFLOW prototype label | AB6C_tP16_132_b_io_c-001 | 
| ICSD | none | 
| Pearson symbol | tP16 | 
| Space group number | 132 | 
| Space group symbol | $P4_2/mcm$ | 
| AFLOW prototype command | aflow --proto=AB6C_tP16_132_b_io_c-001 --params=$a, \allowbreak c/a, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak z_{4}$ | 
RbUF$_{6}$, TlUF$_{6}$, (NH$_{4}$)UF$_{6}$
Basis vectors
| Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
|---|---|---|---|---|---|---|
| $\mathbf{B_{1}}$ | = | $\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}c \,\mathbf{\hat{z}}$ | (2b) | Ag I | 
| $\mathbf{B_{2}}$ | = | $\frac{3}{4} \, \mathbf{a}_{3}$ | = | $\frac{3}{4}c \,\mathbf{\hat{z}}$ | (2b) | Ag I | 
| $\mathbf{B_{3}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}$ | (2c) | U I | 
| $\mathbf{B_{4}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (2c) | U I | 
| $\mathbf{B_{5}}$ | = | $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}$ | = | $a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}$ | (4i) | F I | 
| $\mathbf{B_{6}}$ | = | $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}$ | = | $- a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}$ | (4i) | F I | 
| $\mathbf{B_{7}}$ | = | $- x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $- a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (4i) | F I | 
| $\mathbf{B_{8}}$ | = | $x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (4i) | F I | 
| $\mathbf{B_{9}}$ | = | $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ | = | $a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ | (8o) | F II | 
| $\mathbf{B_{10}}$ | = | $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ | (8o) | F II | 
| $\mathbf{B_{11}}$ | = | $- x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (8o) | F II | 
| $\mathbf{B_{12}}$ | = | $x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (8o) | F II | 
| $\mathbf{B_{13}}$ | = | $- x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}- c \left(z_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (8o) | F II | 
| $\mathbf{B_{14}}$ | = | $x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}- c \left(z_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (8o) | F II | 
| $\mathbf{B_{15}}$ | = | $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ | = | $a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ | (8o) | F II | 
| $\mathbf{B_{16}}$ | = | $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ | (8o) | F II |