AFLOW Prototype: A2BC2_oF40_22_ej_ac_fi-001
This structure originally had the label A2BC2_oF40_22_fi_ad_gh. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)
Links to this page
https://aflow.org/p/PN0D
or
https://aflow.org/p/A2BC2_oF40_22_ej_ac_fi-001
or
PDF Version
Prototype | B$_{2}$CeRu$_{2}$ |
AFLOW prototype label | A2BC2_oF40_22_ej_ac_fi-001 |
ICSD | 40800 |
Pearson symbol | oF40 |
Space group number | 22 |
Space group symbol | $F222$ |
AFLOW prototype command |
aflow --proto=A2BC2_oF40_22_ej_ac_fi-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak x_{3}, \allowbreak y_{4}, \allowbreak y_{5}, \allowbreak x_{6}$ |
CeOs$_{2}$B$_{2}$, GdOs$_{2}$B$_{2}$, GdRu$_{2}$B$_{2}$, LaOs$_{2}$B$_{2}$, LaRu$_{2}$B$_{2}$, NdOs$_{2}$B$_{2}$, NdRu$_{2}$B$_{2}$, PrOs$_{2}$B$_{2}$, PrRu$_{2}$B$_{2}$, SmOs$_{2}$B$_{2}$, SmRu$_{2}$B$_{2}$, ThOs$_{2}$B$_{2}$, ThRu$_{2}$B$_{2}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (4a) | Ce I |
$\mathbf{B_{2}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (4c) | Ce II |
$\mathbf{B_{3}}$ | = | $- x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ | = | $a x_{3} \,\mathbf{\hat{x}}$ | (8e) | B I |
$\mathbf{B_{4}}$ | = | $x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ | = | $- a x_{3} \,\mathbf{\hat{x}}$ | (8e) | B I |
$\mathbf{B_{5}}$ | = | $y_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}+y_{4} \, \mathbf{a}_{3}$ | = | $b y_{4} \,\mathbf{\hat{y}}$ | (8f) | Ru I |
$\mathbf{B_{6}}$ | = | $- y_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}- y_{4} \, \mathbf{a}_{3}$ | = | $- b y_{4} \,\mathbf{\hat{y}}$ | (8f) | Ru I |
$\mathbf{B_{7}}$ | = | $y_{5} \, \mathbf{a}_{1}- \left(y_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}+y_{5} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+b y_{5} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (8i) | Ru II |
$\mathbf{B_{8}}$ | = | $- \left(y_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}- \left(y_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}- b \left(y_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (8i) | Ru II |
$\mathbf{B_{9}}$ | = | $- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ | = | $a x_{6} \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (8j) | B II |
$\mathbf{B_{10}}$ | = | $x_{6} \, \mathbf{a}_{1}- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (8j) | B II |