Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A3B2C9_oF56_69_ag_g_bfgl-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/FSA1
or https://aflow.org/p/A3B2C9_oF56_69_ag_g_bfgl-001
or PDF Version

Orthorhombic Bi$_{3}$NbTiO$_{9}$ $m = 2$ Aurivillius Structure: A3B2C9_oF56_69_ag_g_bfgl-001

Picture of Structure; Click for Big Picture
Prototype Bi$_{3}$Nb$_{2}$O$_{9}$
AFLOW prototype label A3B2C9_oF56_69_ag_g_bfgl-001
ICSD 24734
Pearson symbol oF56
Space group number 69
Space group symbol $Fmmm$
AFLOW prototype command aflow --proto=A3B2C9_oF56_69_ag_g_bfgl-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak x_{4}, \allowbreak x_{5}, \allowbreak x_{6}, \allowbreak x_{7}$

Other compounds with this structure

BaBi$_{2}$Nb$_{2}$O$_{9}$,  CaBi$_{2}$Nb$_{2}$O$_{9}$,  KBi$_{2}$Nb$_{2}$O$_{9}$,  NaBi$_{2}$Nb$_{2}$O$_{9}$,  PbBi$_{2}$Nb$_{2}$O$_{9}$,  SrBi$_{2}$Nb$_{2}$O$_{9}$


  • Aurivillius phases are layered tetragonal materials with composition (Me$'_{2}$O$_{2}$)$^{2+}$(Me$_{m-1}$R$_{m}$O$_{3m+1}$)$^{2-}$ (Me$_{m-1}$Me$'_{2}$R$_{m}$O$_{3(m+1)}$), where Me and Me' are metals and R is a transition metal with a charge of +4 or +5. (Subbaro, 1962)
  • This is the original structural determination by (Aurivillius, 1949). The niobium and titanium atoms equally occupy the same (8g) site. We have arbitrarily labeled this as Nb.
  • Crystals such as BaBi$_{2}$Nb$_{2}$O$_{9}$ put the non-bismuth atom on the (4a) site, and the niobium site can be occupied by niobium, tantalum, and/or titanium. (Aurivillius, 1949)
  • We have swapped Aurivillius's $x$- and $z$-axes.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}b \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (4a) Bi I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4b) O I
$\mathbf{B_{3}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (8f) O II
$\mathbf{B_{4}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}b \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (8f) O II
$\mathbf{B_{5}}$ = $- x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}$ (8g) Bi II
$\mathbf{B_{6}}$ = $x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}$ (8g) Bi II
$\mathbf{B_{7}}$ = $- x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}$ (8g) Nb I
$\mathbf{B_{8}}$ = $x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}$ (8g) Nb I
$\mathbf{B_{9}}$ = $- x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}$ (8g) O III
$\mathbf{B_{10}}$ = $x_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}- x_{6} \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}$ (8g) O III
$\mathbf{B_{11}}$ = $- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (16l) O IV
$\mathbf{B_{12}}$ = $x_{7} \, \mathbf{a}_{1}- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (16l) O IV
$\mathbf{B_{13}}$ = $\left(x_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}- x_{7} \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (16l) O IV
$\mathbf{B_{14}}$ = $- x_{7} \, \mathbf{a}_{1}+\left(x_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{4}b \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (16l) O IV

References

  • B. Aurivillius, Mixed bismuth oxides with layer lattices I. The structure type CaNb$_{2}$Bi$_{2}$O$_{9}$, Arkiv för Kemi 1, 463–479 (1949).
  • E. C. Subbarao, A family of ferroelectric bismuth compounds, J. Phys.: Conf. Ser. 23, 665–676 (1962), doi:10.1016/0022-3697(62)90526-7.

Prototype Generator

aflow --proto=A3B2C9_oF56_69_ag_g_bfgl --params=$a,b/a,c/a,x_{4},x_{5},x_{6},x_{7}$

Species:

Running:

Output: