Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB3_tP4_123_a_ce-001

This structure originally had the label AB3_tP4_123_a_ce. Calls to that address will be redirected here.

If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)

Links to this page

https://aflow.org/p/B4JD
or https://aflow.org/p/AB3_tP4_123_a_ce-001
or PDF Version

CuTi$_{3}$ ($L6_{0}$) Structure: AB3_tP4_123_a_ce-001

Picture of Structure; Click for Big Picture
Prototype CuTi$_{3}$
AFLOW prototype label AB3_tP4_123_a_ce-001
Strukturbericht designation $L6_{0}$
ICSD 103130
Pearson symbol tP4
Space group number 123
Space group symbol $P4/mmm$
AFLOW prototype command aflow --proto=AB3_tP4_123_a_ce-001
--params=$a, \allowbreak c/a$

Other compounds with this structure

AgZr$_{3}$,  AlPu$_{3}$,  BaBi$_{3}$,  $\alpha'$CdAu$_{3}$,  CuZr$_{3}$,  DyIn$_{3}$,  GaPu$_{3}$,  InPt$_{3}$,  MnAu$_{3}$,  SrPb$_{3}$,  TlPd$_{3}$


  • This is a tetragonal distortion of the $L1_{2}$ (Cu$_{3}$Au) structure. When $c = a$ the atoms are at the positions of a face-centered cubic lattice. If we replace the Ti-I atom by Cu, then the system reduces to the $L1_{0}$ (CuAu) structure. Interestingly, (Massalski, 1986) lists no stable or metastable structures with composition CuTi$_{3}$. (Byström, 1947) do find a phase of CdAu$_{3}$ which they say has this structure.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (1a) Cu I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}$ (1c) Ti I
$\mathbf{B_{3}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (2e) Ti II
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (2e) Ti II

References

  • N. Karlsson, An X–ray study of the phases in the copper–titanium system, J. Inst. Met. 79, 391–405 (1951).
  • T. B. Massalski, H. Okamoto, P. R. Subramanian, and L. Kacprzak, eds., Binary Alloy Phase Diagrams (American Society for Metals, Materials Park, OH, 1990).
  • A. Byström and K. E. Almin, X-ray Investigation of Gold-Cadmium Alloys Rich in Gold, Acta Chem. Scand. 1, 76–89 (1947), doi:10.3891/acta.chem.scand.01-0076.

Found in

  • P. Villars and K. Cenzual, Pearson's Crystal Data – Crystal Structure Database for Inorganic Compounds (2013). ASM International.

Prototype Generator

aflow --proto=AB3_tP4_123_a_ce --params=$a,c/a$

Species:

Running:

Output: