Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB2_hP12_194_f_ah-001

This structure originally had the label AB2_hP12_194_f_ah. Calls to that address will be redirected here.

If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)

Links to this page

https://aflow.org/p/LL0C
or https://aflow.org/p/AB2_hP12_194_f_ah-001
or PDF Version

MgZn$_{2}$ Hexagonal Laves ($C14$) Structure: AB2_hP12_194_f_ah-001

Picture of Structure; Click for Big Picture
Prototype MgZn$_{2}$
AFLOW prototype label AB2_hP12_194_f_ah-001
Strukturbericht designation $C14$
Mineral name Hexagonal Laves
ICSD 46006
Pearson symbol hP12
Space group number 194
Space group symbol $P6_3/mmc$
AFLOW prototype command aflow --proto=AB2_hP12_194_f_ah-001
--params=$a, \allowbreak c/a, \allowbreak z_{2}, \allowbreak x_{3}$

Other compounds with this structure

BaMg$_{2}$,  CaCd$_{2}$,  CaLi$_{2}$,  CaMg$_{2}$,  CdCu$_{2}$,  CrBe$_{2}$,  DyOs$_{2}$,  DyRu$_{2}$,  DyTc$_{2}$,  ErMg$_{2}$,  ErMn$_{2}$,  ErOs$_{2}$,  ErRu$_{2}$,  ErTc$_{2}$,  FeBe$_{2}$,  GdOs$_{2}$,  GdRu$_{2}$,  GdTc$_{2}$,  HfCr$_{2}$,  HfFe$_{2}$ (HT),  HfMn$_{2}$ (HT),  HfRe$_{2}$,  HoMg$_{2}$,  HoOs$_{2}$,  HoRe$_{2}$,  HoRu$_{2}$,  HoTc$_{2}$,  KNa$_{2}$,  KPb$_{2}$,  LuMn$_{2}$,  LuOs$_{2}$,  LuRe$_{2}$,  LuRh$_{2}$,  LuRu$_{2}$,  LuTe$_{2}$,  MgZn$_{2}$,  MnBe$_{2}$,  MoBe$_{2}$,  MoFe$_{2}$,  NbCr$_{2}$ (HT),  NbFe$_{2}$,  NbMn$_{2}$,  NdMn$_{2}$,  NdOs$_{2}$,  PrMn$_{2}$,  PrOs$_{2}$,  PuOs$_{2}$,  ReBe$_{2}$,  RuBe$_{2}$,  ScMn$_{2}$,  ScOs$_{2}$,  ScRe$_{2}$,  ScRu$_{2}$,  ScTc$_{2}$,  SmOs$_{2}$,  SrMg$_{2}$,  $\alpha$-TaCo$_{2}$ (LT),  TaCr$_{2}$ (HT),  TaFe$_{2}$,  TaMn$_{2}$,  TbOs$_{2}$,  TbRe$_{2}$,  TbRu$_{2}$,  TbTc$_{2}$,  ThMn$_{2}$,  ThRe$_{2}$,  TiCr$_{2}$ (HT),  TiFe$_{2}$,  TiMn$_{2}$,  TiZn$_{2}$,  TmMn$_{2}$,  TmRu$_{2}$,  TmTc$_{2}$,  UNi$_{2}$,  URe$_{2}$ (HT),  URe$_{2}$,  VBe$_{2}$,  WBe$_{2}$,  WFe$_{2}$,  YOs$_{2}$,  YRe$_{2}$,  YRu$_{2}$,  YTc$_{2}$,  ZrCr$_{2}$,  ZrMn$_{2}$,  ZrOs$_{2}$,  ZrRe$_{2}$,  ZrRu$_{2}$ (HT),  ZrTc$_{2}$,  Co$_{3}$Mn$_{2}$Ge,  Co$_{3}$Mo$_{2}$Si,  Cr$_{3}$Ta$_{2}$Cu,  Fe$_{3}$Zr$_{2}$Ga,  Nb$_{3}$Co$_{2}$Si,  Ni$_{3}$Nb$_{2}$Si,  Ni$_{3}$Ta$_{2}$Si,  Ni$_{3}$Ti$_{2}$Si


\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (2a) Zn I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}c \,\mathbf{\hat{z}}$ (2a) Zn I
$\mathbf{B_{3}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (4f) Mg I
$\mathbf{B_{4}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4f) Mg I
$\mathbf{B_{5}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c z_{2} \,\mathbf{\hat{z}}$ (4f) Mg I
$\mathbf{B_{6}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}- \left(z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c \left(z_{2} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4f) Mg I
$\mathbf{B_{7}}$ = $x_{3} \, \mathbf{a}_{1}+2 x_{3} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{3} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6h) Zn II
$\mathbf{B_{8}}$ = $- 2 x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{3} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6h) Zn II
$\mathbf{B_{9}}$ = $x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $- \sqrt{3}a x_{3} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (6h) Zn II
$\mathbf{B_{10}}$ = $- x_{3} \, \mathbf{a}_{1}- 2 x_{3} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{3} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (6h) Zn II
$\mathbf{B_{11}}$ = $2 x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{3} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (6h) Zn II
$\mathbf{B_{12}}$ = $- x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\sqrt{3}a x_{3} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (6h) Zn II

References

  • T. Ohba, Y. Kitano, and Y. Komura, The charge-density study of the Laves phases, MgZn$_2$ and MgCu$_2$, Acta Crystallogr. Sect. C 40, 1–5 (1984), doi:10.1107/S0108270184002791.

Prototype Generator

aflow --proto=AB2_hP12_194_f_ah --params=$a,c/a,z_{2},x_{3}$

Species:

Running:

Output: