Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB2C_oP16_51_2e_bfi_j-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/LQ5X
or https://aflow.org/p/AB2C_oP16_51_2e_bfi_j-001
or PDF Version

Kenhsuite (γ-Hg$_{3}$S$_{2}$Cl$_{2}$) Structure: AB2C_oP16_51_2e_bfi_j-001

Picture of Structure; Click for Big Picture
Prototype Cl$_{2}$Hg$_{3}$S$_{2}$
AFLOW prototype label AB2C_oP16_51_2e_bfi_j-001
Mineral name kenhsuite
ICSD 29252
Pearson symbol oP16
Space group number 51
Space group symbol $Pmma$
AFLOW prototype command aflow --proto=AB2C_oP16_51_2e_bfi_j-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak z_{2}, \allowbreak z_{3}, \allowbreak z_{4}, \allowbreak x_{5}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak z_{6}$

  • Hg$_{3}$Cl$_{2}$S$_{2}$ is found in three forms (Carlson, 1967):
  • (Ďurovič, 1961) found that Kenhsuite was composed of blocks of periodic structure in space group $C2/m$ #12, with lattice constants $(a',b',c') = (2a,2b,c)$, where $(a,b,c)$ are the lattice constants given here. This page shows what Ďurovič refers to as the composite structure, essentially averaging all of the periodic structures. The data for this structure was originally given in the $Pbmm$ setting of space group #51. We used FINDSYM to transform it to the standard $Pmma$ setting, which involved a rotation and a translation.
  • The Hg-III (4i) site is only half occupied, giving the observed stoichiometry.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&b \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{2}b \,\mathbf{\hat{y}}$ (2b) Hg I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}$ (2b) Hg I
$\mathbf{B_{3}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+z_{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+c z_{2} \,\mathbf{\hat{z}}$ (2e) Cl I
$\mathbf{B_{4}}$ = $\frac{3}{4} \, \mathbf{a}_{1}- z_{2} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}- c z_{2} \,\mathbf{\hat{z}}$ (2e) Cl I
$\mathbf{B_{5}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+c z_{3} \,\mathbf{\hat{z}}$ (2e) Cl II
$\mathbf{B_{6}}$ = $\frac{3}{4} \, \mathbf{a}_{1}- z_{3} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}- c z_{3} \,\mathbf{\hat{z}}$ (2e) Cl II
$\mathbf{B_{7}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (2f) Hg II
$\mathbf{B_{8}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (2f) Hg II
$\mathbf{B_{9}}$ = $x_{5} \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+c z_{5} \,\mathbf{\hat{z}}$ (4i) Hg III
$\mathbf{B_{10}}$ = $- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{3}$ = $- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+c z_{5} \,\mathbf{\hat{z}}$ (4i) Hg III
$\mathbf{B_{11}}$ = $- x_{5} \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}- c z_{5} \,\mathbf{\hat{z}}$ (4i) Hg III
$\mathbf{B_{12}}$ = $\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{3}$ = $a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- c z_{5} \,\mathbf{\hat{z}}$ (4i) Hg III
$\mathbf{B_{13}}$ = $x_{6} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (4j) S I
$\mathbf{B_{14}}$ = $- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (4j) S I
$\mathbf{B_{15}}$ = $- x_{6} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ (4j) S I
$\mathbf{B_{16}}$ = $\left(x_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ (4j) S I

References

  • S. Ďurovič, The Crystal Structure of γ-Hg$_{3}$S$_{2}$Cl$_{2}$, Acta Crystallogr. Sect. B 24, 1661–1670 (1961), doi:10.1107/S0567740868004814.
  • E. H. Carlson, The growth of HgS and Hg$_{3}$S$_{2}$Cl$_{2}$ single crystals by a vapor phase method 1, 271–277 (1967), doi:10.1016/0022-0248(67)90033-4.

Found in

  • O. V. Bokotey, I. P. Studenyak, I. I. Nebola, and Y. V. Minets, Theoretical study of structural features and optical properties of the Hg$_{3}$S$_{2}$Cl$_{2}$ polymorphs 660, 193–196 (2016), doi:10.1016/j.jallcom.2015.11.086.

Prototype Generator

aflow --proto=AB2C_oP16_51_2e_bfi_j --params=$a,b/a,c/a,z_{2},z_{3},z_{4},x_{5},z_{5},x_{6},z_{6}$

Species:

Running:

Output: