Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB24CD28E2_cP224_205_a_4d_b_2c4d_c-001

This structure originally had the label AB24CD28E2_cP224_205_a_4d_b_2c4d_c. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/MHB8
or https://aflow.org/p/AB24CD28E2_cP224_205_a_4d_b_2c4d_c-001
or PDF Version

α-Alum [KAl(SO$_{4}$)$_{2}$ $\cdot$ 12H$_{2}$O, $H4_{13}$] Structure: AB24CD28E2_cP224_205_a_4d_b_2c4d_c-001

Picture of Structure; Click for Big Picture
Prototype AlH$_{24}$KO$_{20}$S$_{2}$
AFLOW prototype label AB24CD28E2_cP224_205_a_4d_b_2c4d_c-001
Strukturbericht designation $H4_{13}$
Mineral name α-alum
ICSD 280547
Pearson symbol cP224
Space group number 205
Space group symbol $Pa\overline{3}$
AFLOW prototype command aflow --proto=AB24CD28E2_cP224_205_a_4d_b_2c4d_c-001
--params=$a, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak x_{5}, \allowbreak x_{6}, \allowbreak y_{6}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak y_{7}, \allowbreak z_{7}, \allowbreak x_{8}, \allowbreak y_{8}, \allowbreak z_{8}, \allowbreak x_{9}, \allowbreak y_{9}, \allowbreak z_{9}, \allowbreak x_{10}, \allowbreak y_{10}, \allowbreak z_{10}, \allowbreak x_{11}, \allowbreak y_{11}, \allowbreak z_{11}, \allowbreak x_{12}, \allowbreak y_{12}, \allowbreak z_{12}, \allowbreak x_{13}, \allowbreak y_{13}, \allowbreak z_{13}$

Other compounds with this structure

NH$_{4}$Al(SO$_{4}$)$_{2}$ $\cdot$ 12H$_{2}$O,  KCr(SO$_{4}$)$_{2}$ $\cdot$ 12H$_{2}$O,  RbAl(SO$_{4}$)$_{2}$ $\cdot$ 12H$_{2}$O,  KAl(SeO$_{4}$)$_{2}$ $\cdot$ 12H$_{2}$O



\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&a \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (4a) Al I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (4a) Al I
$\mathbf{B_{3}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (4a) Al I
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}$ (4a) Al I
$\mathbf{B_{5}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (4b) K I
$\mathbf{B_{6}}$ = $\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}$ (4b) K I
$\mathbf{B_{7}}$ = $\frac{1}{2} \, \mathbf{a}_{1}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}$ (4b) K I
$\mathbf{B_{8}}$ = $\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{z}}$ (4b) K I
$\mathbf{B_{9}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (8c) O I
$\mathbf{B_{10}}$ = $- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) O I
$\mathbf{B_{11}}$ = $- x_{3} \, \mathbf{a}_{1}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) O I
$\mathbf{B_{12}}$ = $\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (8c) O I
$\mathbf{B_{13}}$ = $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- x_{3} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}- a x_{3} \,\mathbf{\hat{z}}$ (8c) O I
$\mathbf{B_{14}}$ = $\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) O I
$\mathbf{B_{15}}$ = $x_{3} \, \mathbf{a}_{1}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) O I
$\mathbf{B_{16}}$ = $- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a x_{3} \,\mathbf{\hat{z}}$ (8c) O I
$\mathbf{B_{17}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (8c) O II
$\mathbf{B_{18}}$ = $- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}+a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) O II
$\mathbf{B_{19}}$ = $- x_{4} \, \mathbf{a}_{1}+\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}+a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) O II
$\mathbf{B_{20}}$ = $\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (8c) O II
$\mathbf{B_{21}}$ = $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (8c) O II
$\mathbf{B_{22}}$ = $\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) O II
$\mathbf{B_{23}}$ = $x_{4} \, \mathbf{a}_{1}- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) O II
$\mathbf{B_{24}}$ = $- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (8c) O II
$\mathbf{B_{25}}$ = $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (8c) S I
$\mathbf{B_{26}}$ = $- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}+\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}+a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) S I
$\mathbf{B_{27}}$ = $- x_{5} \, \mathbf{a}_{1}+\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}+a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) S I
$\mathbf{B_{28}}$ = $\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ = $a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (8c) S I
$\mathbf{B_{29}}$ = $- x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (8c) S I
$\mathbf{B_{30}}$ = $\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) S I
$\mathbf{B_{31}}$ = $x_{5} \, \mathbf{a}_{1}- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8c) S I
$\mathbf{B_{32}}$ = $- \left(x_{5} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (8c) S I
$\mathbf{B_{33}}$ = $x_{6} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}+a y_{6} \,\mathbf{\hat{y}}+a z_{6} \,\mathbf{\hat{z}}$ (24d) H I
$\mathbf{B_{34}}$ = $- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a y_{6} \,\mathbf{\hat{y}}+a \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) H I
$\mathbf{B_{35}}$ = $- x_{6} \, \mathbf{a}_{1}+\left(y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}+a \left(y_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) H I
$\mathbf{B_{36}}$ = $\left(x_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a z_{6} \,\mathbf{\hat{z}}$ (24d) H I
$\mathbf{B_{37}}$ = $z_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+y_{6} \, \mathbf{a}_{3}$ = $a z_{6} \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}+a y_{6} \,\mathbf{\hat{z}}$ (24d) H I
$\mathbf{B_{38}}$ = $\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}- y_{6} \, \mathbf{a}_{3}$ = $a \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a y_{6} \,\mathbf{\hat{z}}$ (24d) H I
$\mathbf{B_{39}}$ = $- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}+\left(y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{6} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}+a \left(y_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) H I
$\mathbf{B_{40}}$ = $- z_{6} \, \mathbf{a}_{1}+\left(x_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a z_{6} \,\mathbf{\hat{x}}+a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) H I
$\mathbf{B_{41}}$ = $y_{6} \, \mathbf{a}_{1}+z_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $a y_{6} \,\mathbf{\hat{x}}+a z_{6} \,\mathbf{\hat{y}}+a x_{6} \,\mathbf{\hat{z}}$ (24d) H I
$\mathbf{B_{42}}$ = $- y_{6} \, \mathbf{a}_{1}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{6} \,\mathbf{\hat{x}}+a \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) H I
$\mathbf{B_{43}}$ = $\left(y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{6} \, \mathbf{a}_{3}$ = $a \left(y_{6} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a x_{6} \,\mathbf{\hat{z}}$ (24d) H I
$\mathbf{B_{44}}$ = $- \left(y_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{6} \, \mathbf{a}_{2}+\left(x_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{6} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a z_{6} \,\mathbf{\hat{y}}+a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) H I
$\mathbf{B_{45}}$ = $- x_{6} \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}- a y_{6} \,\mathbf{\hat{y}}- a z_{6} \,\mathbf{\hat{z}}$ (24d) H I
$\mathbf{B_{46}}$ = $\left(x_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a y_{6} \,\mathbf{\hat{y}}- a \left(z_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) H I
$\mathbf{B_{47}}$ = $x_{6} \, \mathbf{a}_{1}- \left(y_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}- a \left(y_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) H I
$\mathbf{B_{48}}$ = $- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a z_{6} \,\mathbf{\hat{z}}$ (24d) H I
$\mathbf{B_{49}}$ = $- z_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}- y_{6} \, \mathbf{a}_{3}$ = $- a z_{6} \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}- a y_{6} \,\mathbf{\hat{z}}$ (24d) H I
$\mathbf{B_{50}}$ = $- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}+y_{6} \, \mathbf{a}_{3}$ = $- a \left(z_{6} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a y_{6} \,\mathbf{\hat{z}}$ (24d) H I
$\mathbf{B_{51}}$ = $\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}- \left(y_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}- a \left(y_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) H I
$\mathbf{B_{52}}$ = $z_{6} \, \mathbf{a}_{1}- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a z_{6} \,\mathbf{\hat{x}}- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) H I
$\mathbf{B_{53}}$ = $- y_{6} \, \mathbf{a}_{1}- z_{6} \, \mathbf{a}_{2}- x_{6} \, \mathbf{a}_{3}$ = $- a y_{6} \,\mathbf{\hat{x}}- a z_{6} \,\mathbf{\hat{y}}- a x_{6} \,\mathbf{\hat{z}}$ (24d) H I
$\mathbf{B_{54}}$ = $y_{6} \, \mathbf{a}_{1}- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{6} \,\mathbf{\hat{x}}- a \left(z_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) H I
$\mathbf{B_{55}}$ = $- \left(y_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $- a \left(y_{6} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a x_{6} \,\mathbf{\hat{z}}$ (24d) H I
$\mathbf{B_{56}}$ = $\left(y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{6} \, \mathbf{a}_{2}- \left(x_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{6} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a z_{6} \,\mathbf{\hat{y}}- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) H I
$\mathbf{B_{57}}$ = $x_{7} \, \mathbf{a}_{1}+y_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}+a y_{7} \,\mathbf{\hat{y}}+a z_{7} \,\mathbf{\hat{z}}$ (24d) H II
$\mathbf{B_{58}}$ = $- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}- y_{7} \, \mathbf{a}_{2}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a y_{7} \,\mathbf{\hat{y}}+a \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) H II
$\mathbf{B_{59}}$ = $- x_{7} \, \mathbf{a}_{1}+\left(y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}+a \left(y_{7} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{7} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) H II
$\mathbf{B_{60}}$ = $\left(x_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a z_{7} \,\mathbf{\hat{z}}$ (24d) H II
$\mathbf{B_{61}}$ = $z_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+y_{7} \, \mathbf{a}_{3}$ = $a z_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}+a y_{7} \,\mathbf{\hat{z}}$ (24d) H II
$\mathbf{B_{62}}$ = $\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}- y_{7} \, \mathbf{a}_{3}$ = $a \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a y_{7} \,\mathbf{\hat{z}}$ (24d) H II
$\mathbf{B_{63}}$ = $- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}+\left(y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{7} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}+a \left(y_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) H II
$\mathbf{B_{64}}$ = $- z_{7} \, \mathbf{a}_{1}+\left(x_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a z_{7} \,\mathbf{\hat{x}}+a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{7} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) H II
$\mathbf{B_{65}}$ = $y_{7} \, \mathbf{a}_{1}+z_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $a y_{7} \,\mathbf{\hat{x}}+a z_{7} \,\mathbf{\hat{y}}+a x_{7} \,\mathbf{\hat{z}}$ (24d) H II
$\mathbf{B_{66}}$ = $- y_{7} \, \mathbf{a}_{1}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{7} \,\mathbf{\hat{x}}+a \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) H II
$\mathbf{B_{67}}$ = $\left(y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{7} \, \mathbf{a}_{3}$ = $a \left(y_{7} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a x_{7} \,\mathbf{\hat{z}}$ (24d) H II
$\mathbf{B_{68}}$ = $- \left(y_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{7} \, \mathbf{a}_{2}+\left(x_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{7} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a z_{7} \,\mathbf{\hat{y}}+a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) H II
$\mathbf{B_{69}}$ = $- x_{7} \, \mathbf{a}_{1}- y_{7} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}- a y_{7} \,\mathbf{\hat{y}}- a z_{7} \,\mathbf{\hat{z}}$ (24d) H II
$\mathbf{B_{70}}$ = $\left(x_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}+y_{7} \, \mathbf{a}_{2}- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a y_{7} \,\mathbf{\hat{y}}- a \left(z_{7} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) H II
$\mathbf{B_{71}}$ = $x_{7} \, \mathbf{a}_{1}- \left(y_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}- a \left(y_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) H II
$\mathbf{B_{72}}$ = $- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{7} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a z_{7} \,\mathbf{\hat{z}}$ (24d) H II
$\mathbf{B_{73}}$ = $- z_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}- y_{7} \, \mathbf{a}_{3}$ = $- a z_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}- a y_{7} \,\mathbf{\hat{z}}$ (24d) H II
$\mathbf{B_{74}}$ = $- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}+y_{7} \, \mathbf{a}_{3}$ = $- a \left(z_{7} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a y_{7} \,\mathbf{\hat{z}}$ (24d) H II
$\mathbf{B_{75}}$ = $\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}- \left(y_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}- a \left(y_{7} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) H II
$\mathbf{B_{76}}$ = $z_{7} \, \mathbf{a}_{1}- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a z_{7} \,\mathbf{\hat{x}}- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) H II
$\mathbf{B_{77}}$ = $- y_{7} \, \mathbf{a}_{1}- z_{7} \, \mathbf{a}_{2}- x_{7} \, \mathbf{a}_{3}$ = $- a y_{7} \,\mathbf{\hat{x}}- a z_{7} \,\mathbf{\hat{y}}- a x_{7} \,\mathbf{\hat{z}}$ (24d) H II
$\mathbf{B_{78}}$ = $y_{7} \, \mathbf{a}_{1}- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{7} \,\mathbf{\hat{x}}- a \left(z_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) H II
$\mathbf{B_{79}}$ = $- \left(y_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $- a \left(y_{7} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a x_{7} \,\mathbf{\hat{z}}$ (24d) H II
$\mathbf{B_{80}}$ = $\left(y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{7} \, \mathbf{a}_{2}- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{7} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a z_{7} \,\mathbf{\hat{y}}- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) H II
$\mathbf{B_{81}}$ = $x_{8} \, \mathbf{a}_{1}+y_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}+a y_{8} \,\mathbf{\hat{y}}+a z_{8} \,\mathbf{\hat{z}}$ (24d) H III
$\mathbf{B_{82}}$ = $- \left(x_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}- y_{8} \, \mathbf{a}_{2}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{8} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a y_{8} \,\mathbf{\hat{y}}+a \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) H III
$\mathbf{B_{83}}$ = $- x_{8} \, \mathbf{a}_{1}+\left(y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}+a \left(y_{8} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{8} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) H III
$\mathbf{B_{84}}$ = $\left(x_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ = $a \left(x_{8} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{8} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a z_{8} \,\mathbf{\hat{z}}$ (24d) H III
$\mathbf{B_{85}}$ = $z_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}+y_{8} \, \mathbf{a}_{3}$ = $a z_{8} \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}+a y_{8} \,\mathbf{\hat{z}}$ (24d) H III
$\mathbf{B_{86}}$ = $\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}- y_{8} \, \mathbf{a}_{3}$ = $a \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{8} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a y_{8} \,\mathbf{\hat{z}}$ (24d) H III
$\mathbf{B_{87}}$ = $- \left(z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}+\left(y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{8} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}+a \left(y_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) H III
$\mathbf{B_{88}}$ = $- z_{8} \, \mathbf{a}_{1}+\left(x_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a z_{8} \,\mathbf{\hat{x}}+a \left(x_{8} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{8} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) H III
$\mathbf{B_{89}}$ = $y_{8} \, \mathbf{a}_{1}+z_{8} \, \mathbf{a}_{2}+x_{8} \, \mathbf{a}_{3}$ = $a y_{8} \,\mathbf{\hat{x}}+a z_{8} \,\mathbf{\hat{y}}+a x_{8} \,\mathbf{\hat{z}}$ (24d) H III
$\mathbf{B_{90}}$ = $- y_{8} \, \mathbf{a}_{1}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{8} \,\mathbf{\hat{x}}+a \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{8} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) H III
$\mathbf{B_{91}}$ = $\left(y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{8} \, \mathbf{a}_{3}$ = $a \left(y_{8} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{8} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a x_{8} \,\mathbf{\hat{z}}$ (24d) H III
$\mathbf{B_{92}}$ = $- \left(y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{8} \, \mathbf{a}_{2}+\left(x_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{8} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a z_{8} \,\mathbf{\hat{y}}+a \left(x_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) H III
$\mathbf{B_{93}}$ = $- x_{8} \, \mathbf{a}_{1}- y_{8} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}- a y_{8} \,\mathbf{\hat{y}}- a z_{8} \,\mathbf{\hat{z}}$ (24d) H III
$\mathbf{B_{94}}$ = $\left(x_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}+y_{8} \, \mathbf{a}_{2}- \left(z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{8} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a y_{8} \,\mathbf{\hat{y}}- a \left(z_{8} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) H III
$\mathbf{B_{95}}$ = $x_{8} \, \mathbf{a}_{1}- \left(y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}- a \left(y_{8} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) H III
$\mathbf{B_{96}}$ = $- \left(x_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $- a \left(x_{8} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{8} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a z_{8} \,\mathbf{\hat{z}}$ (24d) H III
$\mathbf{B_{97}}$ = $- z_{8} \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}- y_{8} \, \mathbf{a}_{3}$ = $- a z_{8} \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}- a y_{8} \,\mathbf{\hat{z}}$ (24d) H III
$\mathbf{B_{98}}$ = $- \left(z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}+y_{8} \, \mathbf{a}_{3}$ = $- a \left(z_{8} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{8} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a y_{8} \,\mathbf{\hat{z}}$ (24d) H III
$\mathbf{B_{99}}$ = $\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}- \left(y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}- a \left(y_{8} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) H III
$\mathbf{B_{100}}$ = $z_{8} \, \mathbf{a}_{1}- \left(x_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a z_{8} \,\mathbf{\hat{x}}- a \left(x_{8} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) H III
$\mathbf{B_{101}}$ = $- y_{8} \, \mathbf{a}_{1}- z_{8} \, \mathbf{a}_{2}- x_{8} \, \mathbf{a}_{3}$ = $- a y_{8} \,\mathbf{\hat{x}}- a z_{8} \,\mathbf{\hat{y}}- a x_{8} \,\mathbf{\hat{z}}$ (24d) H III
$\mathbf{B_{102}}$ = $y_{8} \, \mathbf{a}_{1}- \left(z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{8} \,\mathbf{\hat{x}}- a \left(z_{8} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) H III
$\mathbf{B_{103}}$ = $- \left(y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{8} \, \mathbf{a}_{3}$ = $- a \left(y_{8} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a x_{8} \,\mathbf{\hat{z}}$ (24d) H III
$\mathbf{B_{104}}$ = $\left(y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{8} \, \mathbf{a}_{2}- \left(x_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{8} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a z_{8} \,\mathbf{\hat{y}}- a \left(x_{8} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) H III
$\mathbf{B_{105}}$ = $x_{9} \, \mathbf{a}_{1}+y_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{x}}+a y_{9} \,\mathbf{\hat{y}}+a z_{9} \,\mathbf{\hat{z}}$ (24d) H IV
$\mathbf{B_{106}}$ = $- \left(x_{9} - \frac{1}{2}\right) \, \mathbf{a}_{1}- y_{9} \, \mathbf{a}_{2}+\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{9} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a y_{9} \,\mathbf{\hat{y}}+a \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) H IV
$\mathbf{B_{107}}$ = $- x_{9} \, \mathbf{a}_{1}+\left(y_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{x}}+a \left(y_{9} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{9} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) H IV
$\mathbf{B_{108}}$ = $\left(x_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{9} - \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ = $a \left(x_{9} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{9} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a z_{9} \,\mathbf{\hat{z}}$ (24d) H IV
$\mathbf{B_{109}}$ = $z_{9} \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}+y_{9} \, \mathbf{a}_{3}$ = $a z_{9} \,\mathbf{\hat{x}}+a x_{9} \,\mathbf{\hat{y}}+a y_{9} \,\mathbf{\hat{z}}$ (24d) H IV
$\mathbf{B_{110}}$ = $\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{9} - \frac{1}{2}\right) \, \mathbf{a}_{2}- y_{9} \, \mathbf{a}_{3}$ = $a \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{9} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a y_{9} \,\mathbf{\hat{z}}$ (24d) H IV
$\mathbf{B_{111}}$ = $- \left(z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{9} \, \mathbf{a}_{2}+\left(y_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{9} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{9} \,\mathbf{\hat{y}}+a \left(y_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) H IV
$\mathbf{B_{112}}$ = $- z_{9} \, \mathbf{a}_{1}+\left(x_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a z_{9} \,\mathbf{\hat{x}}+a \left(x_{9} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{9} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) H IV
$\mathbf{B_{113}}$ = $y_{9} \, \mathbf{a}_{1}+z_{9} \, \mathbf{a}_{2}+x_{9} \, \mathbf{a}_{3}$ = $a y_{9} \,\mathbf{\hat{x}}+a z_{9} \,\mathbf{\hat{y}}+a x_{9} \,\mathbf{\hat{z}}$ (24d) H IV
$\mathbf{B_{114}}$ = $- y_{9} \, \mathbf{a}_{1}+\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{9} \,\mathbf{\hat{x}}+a \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{9} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) H IV
$\mathbf{B_{115}}$ = $\left(y_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{9} \, \mathbf{a}_{3}$ = $a \left(y_{9} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{9} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a x_{9} \,\mathbf{\hat{z}}$ (24d) H IV
$\mathbf{B_{116}}$ = $- \left(y_{9} - \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{9} \, \mathbf{a}_{2}+\left(x_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{9} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a z_{9} \,\mathbf{\hat{y}}+a \left(x_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) H IV
$\mathbf{B_{117}}$ = $- x_{9} \, \mathbf{a}_{1}- y_{9} \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{x}}- a y_{9} \,\mathbf{\hat{y}}- a z_{9} \,\mathbf{\hat{z}}$ (24d) H IV
$\mathbf{B_{118}}$ = $\left(x_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}+y_{9} \, \mathbf{a}_{2}- \left(z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{9} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a y_{9} \,\mathbf{\hat{y}}- a \left(z_{9} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) H IV
$\mathbf{B_{119}}$ = $x_{9} \, \mathbf{a}_{1}- \left(y_{9} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{x}}- a \left(y_{9} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) H IV
$\mathbf{B_{120}}$ = $- \left(x_{9} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $- a \left(x_{9} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{9} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a z_{9} \,\mathbf{\hat{z}}$ (24d) H IV
$\mathbf{B_{121}}$ = $- z_{9} \, \mathbf{a}_{1}- x_{9} \, \mathbf{a}_{2}- y_{9} \, \mathbf{a}_{3}$ = $- a z_{9} \,\mathbf{\hat{x}}- a x_{9} \,\mathbf{\hat{y}}- a y_{9} \,\mathbf{\hat{z}}$ (24d) H IV
$\mathbf{B_{122}}$ = $- \left(z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}+y_{9} \, \mathbf{a}_{3}$ = $- a \left(z_{9} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{9} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a y_{9} \,\mathbf{\hat{z}}$ (24d) H IV
$\mathbf{B_{123}}$ = $\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{9} \, \mathbf{a}_{2}- \left(y_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{9} \,\mathbf{\hat{y}}- a \left(y_{9} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) H IV
$\mathbf{B_{124}}$ = $z_{9} \, \mathbf{a}_{1}- \left(x_{9} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a z_{9} \,\mathbf{\hat{x}}- a \left(x_{9} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) H IV
$\mathbf{B_{125}}$ = $- y_{9} \, \mathbf{a}_{1}- z_{9} \, \mathbf{a}_{2}- x_{9} \, \mathbf{a}_{3}$ = $- a y_{9} \,\mathbf{\hat{x}}- a z_{9} \,\mathbf{\hat{y}}- a x_{9} \,\mathbf{\hat{z}}$ (24d) H IV
$\mathbf{B_{126}}$ = $y_{9} \, \mathbf{a}_{1}- \left(z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{9} \,\mathbf{\hat{x}}- a \left(z_{9} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) H IV
$\mathbf{B_{127}}$ = $- \left(y_{9} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{9} \, \mathbf{a}_{3}$ = $- a \left(y_{9} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a x_{9} \,\mathbf{\hat{z}}$ (24d) H IV
$\mathbf{B_{128}}$ = $\left(y_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{9} \, \mathbf{a}_{2}- \left(x_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{9} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a z_{9} \,\mathbf{\hat{y}}- a \left(x_{9} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) H IV
$\mathbf{B_{129}}$ = $x_{10} \, \mathbf{a}_{1}+y_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $a x_{10} \,\mathbf{\hat{x}}+a y_{10} \,\mathbf{\hat{y}}+a z_{10} \,\mathbf{\hat{z}}$ (24d) O III
$\mathbf{B_{130}}$ = $- \left(x_{10} - \frac{1}{2}\right) \, \mathbf{a}_{1}- y_{10} \, \mathbf{a}_{2}+\left(z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{10} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a y_{10} \,\mathbf{\hat{y}}+a \left(z_{10} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) O III
$\mathbf{B_{131}}$ = $- x_{10} \, \mathbf{a}_{1}+\left(y_{10} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{10} \,\mathbf{\hat{x}}+a \left(y_{10} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{10} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) O III
$\mathbf{B_{132}}$ = $\left(x_{10} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{10} - \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ = $a \left(x_{10} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{10} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a z_{10} \,\mathbf{\hat{z}}$ (24d) O III
$\mathbf{B_{133}}$ = $z_{10} \, \mathbf{a}_{1}+x_{10} \, \mathbf{a}_{2}+y_{10} \, \mathbf{a}_{3}$ = $a z_{10} \,\mathbf{\hat{x}}+a x_{10} \,\mathbf{\hat{y}}+a y_{10} \,\mathbf{\hat{z}}$ (24d) O III
$\mathbf{B_{134}}$ = $\left(z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{10} - \frac{1}{2}\right) \, \mathbf{a}_{2}- y_{10} \, \mathbf{a}_{3}$ = $a \left(z_{10} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{10} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a y_{10} \,\mathbf{\hat{z}}$ (24d) O III
$\mathbf{B_{135}}$ = $- \left(z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{10} \, \mathbf{a}_{2}+\left(y_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{10} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{10} \,\mathbf{\hat{y}}+a \left(y_{10} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) O III
$\mathbf{B_{136}}$ = $- z_{10} \, \mathbf{a}_{1}+\left(x_{10} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{10} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a z_{10} \,\mathbf{\hat{x}}+a \left(x_{10} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{10} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) O III
$\mathbf{B_{137}}$ = $y_{10} \, \mathbf{a}_{1}+z_{10} \, \mathbf{a}_{2}+x_{10} \, \mathbf{a}_{3}$ = $a y_{10} \,\mathbf{\hat{x}}+a z_{10} \,\mathbf{\hat{y}}+a x_{10} \,\mathbf{\hat{z}}$ (24d) O III
$\mathbf{B_{138}}$ = $- y_{10} \, \mathbf{a}_{1}+\left(z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{10} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{10} \,\mathbf{\hat{x}}+a \left(z_{10} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{10} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) O III
$\mathbf{B_{139}}$ = $\left(y_{10} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{10} \, \mathbf{a}_{3}$ = $a \left(y_{10} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{10} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a x_{10} \,\mathbf{\hat{z}}$ (24d) O III
$\mathbf{B_{140}}$ = $- \left(y_{10} - \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{10} \, \mathbf{a}_{2}+\left(x_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{10} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a z_{10} \,\mathbf{\hat{y}}+a \left(x_{10} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) O III
$\mathbf{B_{141}}$ = $- x_{10} \, \mathbf{a}_{1}- y_{10} \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ = $- a x_{10} \,\mathbf{\hat{x}}- a y_{10} \,\mathbf{\hat{y}}- a z_{10} \,\mathbf{\hat{z}}$ (24d) O III
$\mathbf{B_{142}}$ = $\left(x_{10} + \frac{1}{2}\right) \, \mathbf{a}_{1}+y_{10} \, \mathbf{a}_{2}- \left(z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{10} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a y_{10} \,\mathbf{\hat{y}}- a \left(z_{10} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) O III
$\mathbf{B_{143}}$ = $x_{10} \, \mathbf{a}_{1}- \left(y_{10} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{10} \,\mathbf{\hat{x}}- a \left(y_{10} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(z_{10} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) O III
$\mathbf{B_{144}}$ = $- \left(x_{10} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{10} + \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $- a \left(x_{10} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{10} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a z_{10} \,\mathbf{\hat{z}}$ (24d) O III
$\mathbf{B_{145}}$ = $- z_{10} \, \mathbf{a}_{1}- x_{10} \, \mathbf{a}_{2}- y_{10} \, \mathbf{a}_{3}$ = $- a z_{10} \,\mathbf{\hat{x}}- a x_{10} \,\mathbf{\hat{y}}- a y_{10} \,\mathbf{\hat{z}}$ (24d) O III
$\mathbf{B_{146}}$ = $- \left(z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{10} + \frac{1}{2}\right) \, \mathbf{a}_{2}+y_{10} \, \mathbf{a}_{3}$ = $- a \left(z_{10} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{10} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a y_{10} \,\mathbf{\hat{z}}$ (24d) O III
$\mathbf{B_{147}}$ = $\left(z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{10} \, \mathbf{a}_{2}- \left(y_{10} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{10} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{10} \,\mathbf{\hat{y}}- a \left(y_{10} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) O III
$\mathbf{B_{148}}$ = $z_{10} \, \mathbf{a}_{1}- \left(x_{10} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a z_{10} \,\mathbf{\hat{x}}- a \left(x_{10} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{10} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) O III
$\mathbf{B_{149}}$ = $- y_{10} \, \mathbf{a}_{1}- z_{10} \, \mathbf{a}_{2}- x_{10} \, \mathbf{a}_{3}$ = $- a y_{10} \,\mathbf{\hat{x}}- a z_{10} \,\mathbf{\hat{y}}- a x_{10} \,\mathbf{\hat{z}}$ (24d) O III
$\mathbf{B_{150}}$ = $y_{10} \, \mathbf{a}_{1}- \left(z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{10} \,\mathbf{\hat{x}}- a \left(z_{10} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{10} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) O III
$\mathbf{B_{151}}$ = $- \left(y_{10} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{10} \, \mathbf{a}_{3}$ = $- a \left(y_{10} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(z_{10} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a x_{10} \,\mathbf{\hat{z}}$ (24d) O III
$\mathbf{B_{152}}$ = $\left(y_{10} + \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{10} \, \mathbf{a}_{2}- \left(x_{10} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{10} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a z_{10} \,\mathbf{\hat{y}}- a \left(x_{10} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) O III
$\mathbf{B_{153}}$ = $x_{11} \, \mathbf{a}_{1}+y_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $a x_{11} \,\mathbf{\hat{x}}+a y_{11} \,\mathbf{\hat{y}}+a z_{11} \,\mathbf{\hat{z}}$ (24d) O IV
$\mathbf{B_{154}}$ = $- \left(x_{11} - \frac{1}{2}\right) \, \mathbf{a}_{1}- y_{11} \, \mathbf{a}_{2}+\left(z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{11} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a y_{11} \,\mathbf{\hat{y}}+a \left(z_{11} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) O IV
$\mathbf{B_{155}}$ = $- x_{11} \, \mathbf{a}_{1}+\left(y_{11} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{11} \,\mathbf{\hat{x}}+a \left(y_{11} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{11} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) O IV
$\mathbf{B_{156}}$ = $\left(x_{11} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{11} - \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ = $a \left(x_{11} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{11} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a z_{11} \,\mathbf{\hat{z}}$ (24d) O IV
$\mathbf{B_{157}}$ = $z_{11} \, \mathbf{a}_{1}+x_{11} \, \mathbf{a}_{2}+y_{11} \, \mathbf{a}_{3}$ = $a z_{11} \,\mathbf{\hat{x}}+a x_{11} \,\mathbf{\hat{y}}+a y_{11} \,\mathbf{\hat{z}}$ (24d) O IV
$\mathbf{B_{158}}$ = $\left(z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{11} - \frac{1}{2}\right) \, \mathbf{a}_{2}- y_{11} \, \mathbf{a}_{3}$ = $a \left(z_{11} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{11} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a y_{11} \,\mathbf{\hat{z}}$ (24d) O IV
$\mathbf{B_{159}}$ = $- \left(z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{11} \, \mathbf{a}_{2}+\left(y_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{11} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{11} \,\mathbf{\hat{y}}+a \left(y_{11} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) O IV
$\mathbf{B_{160}}$ = $- z_{11} \, \mathbf{a}_{1}+\left(x_{11} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{11} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a z_{11} \,\mathbf{\hat{x}}+a \left(x_{11} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{11} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) O IV
$\mathbf{B_{161}}$ = $y_{11} \, \mathbf{a}_{1}+z_{11} \, \mathbf{a}_{2}+x_{11} \, \mathbf{a}_{3}$ = $a y_{11} \,\mathbf{\hat{x}}+a z_{11} \,\mathbf{\hat{y}}+a x_{11} \,\mathbf{\hat{z}}$ (24d) O IV
$\mathbf{B_{162}}$ = $- y_{11} \, \mathbf{a}_{1}+\left(z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{11} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{11} \,\mathbf{\hat{x}}+a \left(z_{11} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{11} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) O IV
$\mathbf{B_{163}}$ = $\left(y_{11} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{11} \, \mathbf{a}_{3}$ = $a \left(y_{11} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{11} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a x_{11} \,\mathbf{\hat{z}}$ (24d) O IV
$\mathbf{B_{164}}$ = $- \left(y_{11} - \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{11} \, \mathbf{a}_{2}+\left(x_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{11} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a z_{11} \,\mathbf{\hat{y}}+a \left(x_{11} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) O IV
$\mathbf{B_{165}}$ = $- x_{11} \, \mathbf{a}_{1}- y_{11} \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ = $- a x_{11} \,\mathbf{\hat{x}}- a y_{11} \,\mathbf{\hat{y}}- a z_{11} \,\mathbf{\hat{z}}$ (24d) O IV
$\mathbf{B_{166}}$ = $\left(x_{11} + \frac{1}{2}\right) \, \mathbf{a}_{1}+y_{11} \, \mathbf{a}_{2}- \left(z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{11} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a y_{11} \,\mathbf{\hat{y}}- a \left(z_{11} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) O IV
$\mathbf{B_{167}}$ = $x_{11} \, \mathbf{a}_{1}- \left(y_{11} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{11} \,\mathbf{\hat{x}}- a \left(y_{11} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(z_{11} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) O IV
$\mathbf{B_{168}}$ = $- \left(x_{11} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{11} + \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $- a \left(x_{11} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{11} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a z_{11} \,\mathbf{\hat{z}}$ (24d) O IV
$\mathbf{B_{169}}$ = $- z_{11} \, \mathbf{a}_{1}- x_{11} \, \mathbf{a}_{2}- y_{11} \, \mathbf{a}_{3}$ = $- a z_{11} \,\mathbf{\hat{x}}- a x_{11} \,\mathbf{\hat{y}}- a y_{11} \,\mathbf{\hat{z}}$ (24d) O IV
$\mathbf{B_{170}}$ = $- \left(z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{11} + \frac{1}{2}\right) \, \mathbf{a}_{2}+y_{11} \, \mathbf{a}_{3}$ = $- a \left(z_{11} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{11} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a y_{11} \,\mathbf{\hat{z}}$ (24d) O IV
$\mathbf{B_{171}}$ = $\left(z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{11} \, \mathbf{a}_{2}- \left(y_{11} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{11} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{11} \,\mathbf{\hat{y}}- a \left(y_{11} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) O IV
$\mathbf{B_{172}}$ = $z_{11} \, \mathbf{a}_{1}- \left(x_{11} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a z_{11} \,\mathbf{\hat{x}}- a \left(x_{11} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{11} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) O IV
$\mathbf{B_{173}}$ = $- y_{11} \, \mathbf{a}_{1}- z_{11} \, \mathbf{a}_{2}- x_{11} \, \mathbf{a}_{3}$ = $- a y_{11} \,\mathbf{\hat{x}}- a z_{11} \,\mathbf{\hat{y}}- a x_{11} \,\mathbf{\hat{z}}$ (24d) O IV
$\mathbf{B_{174}}$ = $y_{11} \, \mathbf{a}_{1}- \left(z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{11} \,\mathbf{\hat{x}}- a \left(z_{11} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{11} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) O IV
$\mathbf{B_{175}}$ = $- \left(y_{11} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{11} \, \mathbf{a}_{3}$ = $- a \left(y_{11} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(z_{11} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a x_{11} \,\mathbf{\hat{z}}$ (24d) O IV
$\mathbf{B_{176}}$ = $\left(y_{11} + \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{11} \, \mathbf{a}_{2}- \left(x_{11} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{11} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a z_{11} \,\mathbf{\hat{y}}- a \left(x_{11} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) O IV
$\mathbf{B_{177}}$ = $x_{12} \, \mathbf{a}_{1}+y_{12} \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ = $a x_{12} \,\mathbf{\hat{x}}+a y_{12} \,\mathbf{\hat{y}}+a z_{12} \,\mathbf{\hat{z}}$ (24d) O V
$\mathbf{B_{178}}$ = $- \left(x_{12} - \frac{1}{2}\right) \, \mathbf{a}_{1}- y_{12} \, \mathbf{a}_{2}+\left(z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{12} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a y_{12} \,\mathbf{\hat{y}}+a \left(z_{12} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) O V
$\mathbf{B_{179}}$ = $- x_{12} \, \mathbf{a}_{1}+\left(y_{12} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{12} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{12} \,\mathbf{\hat{x}}+a \left(y_{12} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{12} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) O V
$\mathbf{B_{180}}$ = $\left(x_{12} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{12} - \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{12} \, \mathbf{a}_{3}$ = $a \left(x_{12} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{12} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a z_{12} \,\mathbf{\hat{z}}$ (24d) O V
$\mathbf{B_{181}}$ = $z_{12} \, \mathbf{a}_{1}+x_{12} \, \mathbf{a}_{2}+y_{12} \, \mathbf{a}_{3}$ = $a z_{12} \,\mathbf{\hat{x}}+a x_{12} \,\mathbf{\hat{y}}+a y_{12} \,\mathbf{\hat{z}}$ (24d) O V
$\mathbf{B_{182}}$ = $\left(z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{12} - \frac{1}{2}\right) \, \mathbf{a}_{2}- y_{12} \, \mathbf{a}_{3}$ = $a \left(z_{12} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{12} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a y_{12} \,\mathbf{\hat{z}}$ (24d) O V
$\mathbf{B_{183}}$ = $- \left(z_{12} - \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{12} \, \mathbf{a}_{2}+\left(y_{12} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{12} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{12} \,\mathbf{\hat{y}}+a \left(y_{12} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) O V
$\mathbf{B_{184}}$ = $- z_{12} \, \mathbf{a}_{1}+\left(x_{12} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{12} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a z_{12} \,\mathbf{\hat{x}}+a \left(x_{12} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{12} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) O V
$\mathbf{B_{185}}$ = $y_{12} \, \mathbf{a}_{1}+z_{12} \, \mathbf{a}_{2}+x_{12} \, \mathbf{a}_{3}$ = $a y_{12} \,\mathbf{\hat{x}}+a z_{12} \,\mathbf{\hat{y}}+a x_{12} \,\mathbf{\hat{z}}$ (24d) O V
$\mathbf{B_{186}}$ = $- y_{12} \, \mathbf{a}_{1}+\left(z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{12} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{12} \,\mathbf{\hat{x}}+a \left(z_{12} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{12} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) O V
$\mathbf{B_{187}}$ = $\left(y_{12} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(z_{12} - \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{12} \, \mathbf{a}_{3}$ = $a \left(y_{12} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{12} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a x_{12} \,\mathbf{\hat{z}}$ (24d) O V
$\mathbf{B_{188}}$ = $- \left(y_{12} - \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{12} \, \mathbf{a}_{2}+\left(x_{12} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{12} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a z_{12} \,\mathbf{\hat{y}}+a \left(x_{12} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) O V
$\mathbf{B_{189}}$ = $- x_{12} \, \mathbf{a}_{1}- y_{12} \, \mathbf{a}_{2}- z_{12} \, \mathbf{a}_{3}$ = $- a x_{12} \,\mathbf{\hat{x}}- a y_{12} \,\mathbf{\hat{y}}- a z_{12} \,\mathbf{\hat{z}}$ (24d) O V
$\mathbf{B_{190}}$ = $\left(x_{12} + \frac{1}{2}\right) \, \mathbf{a}_{1}+y_{12} \, \mathbf{a}_{2}- \left(z_{12} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{12} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a y_{12} \,\mathbf{\hat{y}}- a \left(z_{12} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) O V
$\mathbf{B_{191}}$ = $x_{12} \, \mathbf{a}_{1}- \left(y_{12} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{12} \,\mathbf{\hat{x}}- a \left(y_{12} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(z_{12} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) O V
$\mathbf{B_{192}}$ = $- \left(x_{12} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{12} + \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ = $- a \left(x_{12} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{12} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a z_{12} \,\mathbf{\hat{z}}$ (24d) O V
$\mathbf{B_{193}}$ = $- z_{12} \, \mathbf{a}_{1}- x_{12} \, \mathbf{a}_{2}- y_{12} \, \mathbf{a}_{3}$ = $- a z_{12} \,\mathbf{\hat{x}}- a x_{12} \,\mathbf{\hat{y}}- a y_{12} \,\mathbf{\hat{z}}$ (24d) O V
$\mathbf{B_{194}}$ = $- \left(z_{12} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{12} + \frac{1}{2}\right) \, \mathbf{a}_{2}+y_{12} \, \mathbf{a}_{3}$ = $- a \left(z_{12} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{12} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a y_{12} \,\mathbf{\hat{z}}$ (24d) O V
$\mathbf{B_{195}}$ = $\left(z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{12} \, \mathbf{a}_{2}- \left(y_{12} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{12} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{12} \,\mathbf{\hat{y}}- a \left(y_{12} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) O V
$\mathbf{B_{196}}$ = $z_{12} \, \mathbf{a}_{1}- \left(x_{12} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{12} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a z_{12} \,\mathbf{\hat{x}}- a \left(x_{12} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{12} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) O V
$\mathbf{B_{197}}$ = $- y_{12} \, \mathbf{a}_{1}- z_{12} \, \mathbf{a}_{2}- x_{12} \, \mathbf{a}_{3}$ = $- a y_{12} \,\mathbf{\hat{x}}- a z_{12} \,\mathbf{\hat{y}}- a x_{12} \,\mathbf{\hat{z}}$ (24d) O V
$\mathbf{B_{198}}$ = $y_{12} \, \mathbf{a}_{1}- \left(z_{12} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{12} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{12} \,\mathbf{\hat{x}}- a \left(z_{12} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{12} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) O V
$\mathbf{B_{199}}$ = $- \left(y_{12} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{12} \, \mathbf{a}_{3}$ = $- a \left(y_{12} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(z_{12} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a x_{12} \,\mathbf{\hat{z}}$ (24d) O V
$\mathbf{B_{200}}$ = $\left(y_{12} + \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{12} \, \mathbf{a}_{2}- \left(x_{12} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{12} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a z_{12} \,\mathbf{\hat{y}}- a \left(x_{12} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) O V
$\mathbf{B_{201}}$ = $x_{13} \, \mathbf{a}_{1}+y_{13} \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ = $a x_{13} \,\mathbf{\hat{x}}+a y_{13} \,\mathbf{\hat{y}}+a z_{13} \,\mathbf{\hat{z}}$ (24d) O VI
$\mathbf{B_{202}}$ = $- \left(x_{13} - \frac{1}{2}\right) \, \mathbf{a}_{1}- y_{13} \, \mathbf{a}_{2}+\left(z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{13} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a y_{13} \,\mathbf{\hat{y}}+a \left(z_{13} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) O VI
$\mathbf{B_{203}}$ = $- x_{13} \, \mathbf{a}_{1}+\left(y_{13} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{13} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{13} \,\mathbf{\hat{x}}+a \left(y_{13} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(z_{13} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) O VI
$\mathbf{B_{204}}$ = $\left(x_{13} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{13} - \frac{1}{2}\right) \, \mathbf{a}_{2}- z_{13} \, \mathbf{a}_{3}$ = $a \left(x_{13} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(y_{13} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a z_{13} \,\mathbf{\hat{z}}$ (24d) O VI
$\mathbf{B_{205}}$ = $z_{13} \, \mathbf{a}_{1}+x_{13} \, \mathbf{a}_{2}+y_{13} \, \mathbf{a}_{3}$ = $a z_{13} \,\mathbf{\hat{x}}+a x_{13} \,\mathbf{\hat{y}}+a y_{13} \,\mathbf{\hat{z}}$ (24d) O VI
$\mathbf{B_{206}}$ = $\left(z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{13} - \frac{1}{2}\right) \, \mathbf{a}_{2}- y_{13} \, \mathbf{a}_{3}$ = $a \left(z_{13} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{13} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a y_{13} \,\mathbf{\hat{z}}$ (24d) O VI
$\mathbf{B_{207}}$ = $- \left(z_{13} - \frac{1}{2}\right) \, \mathbf{a}_{1}- x_{13} \, \mathbf{a}_{2}+\left(y_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(z_{13} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{13} \,\mathbf{\hat{y}}+a \left(y_{13} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) O VI
$\mathbf{B_{208}}$ = $- z_{13} \, \mathbf{a}_{1}+\left(x_{13} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(y_{13} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a z_{13} \,\mathbf{\hat{x}}+a \left(x_{13} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(y_{13} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) O VI
$\mathbf{B_{209}}$ = $y_{13} \, \mathbf{a}_{1}+z_{13} \, \mathbf{a}_{2}+x_{13} \, \mathbf{a}_{3}$ = $a y_{13} \,\mathbf{\hat{x}}+a z_{13} \,\mathbf{\hat{y}}+a x_{13} \,\mathbf{\hat{z}}$ (24d) O VI
$\mathbf{B_{210}}$ = $- y_{13} \, \mathbf{a}_{1}+\left(z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{13} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{13} \,\mathbf{\hat{x}}+a \left(z_{13} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- a \left(x_{13} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) O VI
$\mathbf{B_{211}}$ = $\left(y_{13} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(z_{13} - \frac{1}{2}\right) \, \mathbf{a}_{2}- x_{13} \, \mathbf{a}_{3}$ = $a \left(y_{13} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(z_{13} - \frac{1}{2}\right) \,\mathbf{\hat{y}}- a x_{13} \,\mathbf{\hat{z}}$ (24d) O VI
$\mathbf{B_{212}}$ = $- \left(y_{13} - \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{13} \, \mathbf{a}_{2}+\left(x_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{13} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a z_{13} \,\mathbf{\hat{y}}+a \left(x_{13} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) O VI
$\mathbf{B_{213}}$ = $- x_{13} \, \mathbf{a}_{1}- y_{13} \, \mathbf{a}_{2}- z_{13} \, \mathbf{a}_{3}$ = $- a x_{13} \,\mathbf{\hat{x}}- a y_{13} \,\mathbf{\hat{y}}- a z_{13} \,\mathbf{\hat{z}}$ (24d) O VI
$\mathbf{B_{214}}$ = $\left(x_{13} + \frac{1}{2}\right) \, \mathbf{a}_{1}+y_{13} \, \mathbf{a}_{2}- \left(z_{13} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{13} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a y_{13} \,\mathbf{\hat{y}}- a \left(z_{13} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) O VI
$\mathbf{B_{215}}$ = $x_{13} \, \mathbf{a}_{1}- \left(y_{13} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{13} \,\mathbf{\hat{x}}- a \left(y_{13} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(z_{13} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) O VI
$\mathbf{B_{216}}$ = $- \left(x_{13} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{13} + \frac{1}{2}\right) \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ = $- a \left(x_{13} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(y_{13} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a z_{13} \,\mathbf{\hat{z}}$ (24d) O VI
$\mathbf{B_{217}}$ = $- z_{13} \, \mathbf{a}_{1}- x_{13} \, \mathbf{a}_{2}- y_{13} \, \mathbf{a}_{3}$ = $- a z_{13} \,\mathbf{\hat{x}}- a x_{13} \,\mathbf{\hat{y}}- a y_{13} \,\mathbf{\hat{z}}$ (24d) O VI
$\mathbf{B_{218}}$ = $- \left(z_{13} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{13} + \frac{1}{2}\right) \, \mathbf{a}_{2}+y_{13} \, \mathbf{a}_{3}$ = $- a \left(z_{13} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{13} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a y_{13} \,\mathbf{\hat{z}}$ (24d) O VI
$\mathbf{B_{219}}$ = $\left(z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{13} \, \mathbf{a}_{2}- \left(y_{13} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(z_{13} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{13} \,\mathbf{\hat{y}}- a \left(y_{13} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) O VI
$\mathbf{B_{220}}$ = $z_{13} \, \mathbf{a}_{1}- \left(x_{13} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a z_{13} \,\mathbf{\hat{x}}- a \left(x_{13} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(y_{13} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) O VI
$\mathbf{B_{221}}$ = $- y_{13} \, \mathbf{a}_{1}- z_{13} \, \mathbf{a}_{2}- x_{13} \, \mathbf{a}_{3}$ = $- a y_{13} \,\mathbf{\hat{x}}- a z_{13} \,\mathbf{\hat{y}}- a x_{13} \,\mathbf{\hat{z}}$ (24d) O VI
$\mathbf{B_{222}}$ = $y_{13} \, \mathbf{a}_{1}- \left(z_{13} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{13} \,\mathbf{\hat{x}}- a \left(z_{13} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+a \left(x_{13} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) O VI
$\mathbf{B_{223}}$ = $- \left(y_{13} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{13} \, \mathbf{a}_{3}$ = $- a \left(y_{13} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(z_{13} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+a x_{13} \,\mathbf{\hat{z}}$ (24d) O VI
$\mathbf{B_{224}}$ = $\left(y_{13} + \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{13} \, \mathbf{a}_{2}- \left(x_{13} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{13} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a z_{13} \,\mathbf{\hat{y}}- a \left(x_{13} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24d) O VI

References

  • S. C. Nyburg, J. W. Steed, S. Aleksovska, and V. M. Petrusevski, Structure of the alums. I. On the sulfate group disorder in the α-alums, Acta Crystallogr. Sect. B 56, 204–209 (2000), doi:10.1107/S0108768199014846.
  • P. P. Ewald and C. Hermann, eds., Strukturbericht 1913-1928 (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1931).
  • J. M. Cork, Crystal structure of certain of the alums, Phil. Mag. 4, 688–698 (1927).
  • C. Gottfried and F. Schossberger, eds., Strukturbericht Band III 1933-1935 (Akademische Verlagsgesellschaft M. B. H., Leipzig, 1937).
  • C. A. Beevers and H. Lipson, Crystal Structure of the Alums, Nature 134, 327 (1934), doi:10.1038/134327a0.
  • H. Lipson, The Relation between the Alum Structures, Proc. Roy. Soc. London 151, 347–356 (1935), doi:10.1098/rspa.1935.0154.
  • A. H. C. Ledsham and H. Steeple, The crystal structure of sodium chromium alum and caesium chromium alum}, Acta Crystallogr. Sect. B 24, 1287–1289 (1968), doi:10.1107/S0567740868004188.
  • \bibitem{Fletcher_Acta_Cryst_17_290_1964.bibR. O. W. Fletcher and H. Steeple, The crystal structure of the low-temperature phase of methylammonium alum}, Acta Cryst. 17, 290–294 (1964), doi:10.1107/S0365110X64000706.\bibAnnoteFile{Fletcher_Acta_Cryst_17_290_1964.bib

Prototype Generator

aflow --proto=AB24CD28E2_cP224_205_a_4d_b_2c4d_c --params=$a,x_{3},x_{4},x_{5},x_{6},y_{6},z_{6},x_{7},y_{7},z_{7},x_{8},y_{8},z_{8},x_{9},y_{9},z_{9},x_{10},y_{10},z_{10},x_{11},y_{11},z_{11},x_{12},y_{12},z_{12},x_{13},y_{13},z_{13}$

Species:

Running:

Output: