Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A6BC4_hP11_187_jk_a_ck-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/NFL9
or https://aflow.org/p/A6BC4_hP11_187_jk_a_ck-001
or PDF Version

LiCo$_{6}$P$_{4}$ Structure: A6BC4_hP11_187_jk_a_ck-001

Picture of Structure; Click for Big Picture
Prototype Co$_{6}$LiP$_{4}$
AFLOW prototype label A6BC4_hP11_187_jk_a_ck-001
ICSD 69692
Pearson symbol hP11
Space group number 187
Space group symbol $P\overline{6}m2$
AFLOW prototype command aflow --proto=A6BC4_hP11_187_jk_a_ck-001
--params=$a, \allowbreak c/a, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak x_{5}$

Other compounds with this structure

CeCo$_{6}$P$_{4}$,  CeRh$_{6}$Ge$_{4}$,  CeRh$_{6}$Ge$_{4}$,  DyCo$_{6}$P$_{4}$,  DyRh$_{6}$Ge$_{4}$,  ErCo$_{6}$P$_{4}$,  ErRh$_{6}$Ge$_{4}$,  EuCo$_{6}$P$_{4}$,  EuRh$_{6}$Ge$_{4}$,  GdCo$_{6}$P$_{4}$,  GdRh$_{6}$Ge$_{4}$,  HoCo$_{6}$P$_{4}$,  HoRh$_{6}$Ge$_{4}$,  LaCo$_{6}$P$_{4}$,  LaRh$_{6}$Ge$_{4}$,  LuCo$_{6}$P$_{4}$,  LuRh$_{6}$Ge$_{4}$,  LuRh$_{6}$P$_{4}$,  NdCo$_{6}$P$_{4}$,  NdRh$_{6}$Ge$_{4}$,  PrCo$_{6}$P$_{4}$,  PrRh$_{6}$Ge$_{4}$,  ScRh$_{6}$P$_{4}$,  SmCo$_{6}$P$_{4}$,  SmRh$_{6}$Ge$_{4}$,  TbCo$_{6}$P$_{4}$,  TbRh$_{6}$Ge$_{4}$,  TmCo$_{6}$P$_{4}$,  TmRh$_{6}$Ge$_{4}$,  YCo$_{6}$P$_{4}$,  YRh$_{6}$Ge$_{4}$,  YRh$_{6}$P$_{4}$,  YbCo$_{6}$P$_{4}$,  YbRh$_{6}$Ge$_{4}$


\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (1a) Li I
$\mathbf{B_{2}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}$ (1c) P I
$\mathbf{B_{3}}$ = $x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}$ = $- \sqrt{3}a x_{3} \,\mathbf{\hat{y}}$ (3j) Co I
$\mathbf{B_{4}}$ = $x_{3} \, \mathbf{a}_{1}+2 x_{3} \, \mathbf{a}_{2}$ = $\frac{3}{2}a x_{3} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}$ (3j) Co I
$\mathbf{B_{5}}$ = $- 2 x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}$ = $- \frac{3}{2}a x_{3} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{3} \,\mathbf{\hat{y}}$ (3j) Co I
$\mathbf{B_{6}}$ = $x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- \sqrt{3}a x_{4} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (3k) Co II
$\mathbf{B_{7}}$ = $x_{4} \, \mathbf{a}_{1}+2 x_{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{4} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (3k) Co II
$\mathbf{B_{8}}$ = $- 2 x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{4} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{4} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (3k) Co II
$\mathbf{B_{9}}$ = $x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- \sqrt{3}a x_{5} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (3k) P II
$\mathbf{B_{10}}$ = $x_{5} \, \mathbf{a}_{1}+2 x_{5} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{5} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{5} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (3k) P II
$\mathbf{B_{11}}$ = $- 2 x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{5} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{5} \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (3k) P II

References

  • R. Buschmann and H.-U. Schuster, Darstellung und Kristallstruktur der Verbindung LiCo$_{6}$P$_{4}$, Z. Naturforsch. B 46, 699–701 (1991), doi:10.1515/znb-1991-0525.

Found in

  • S. F. Matar, A. Al-Alam, N. Ouaini, and R. Pöttgen, Ab initio investigations of the electronic structures and chemical bonding in LiCo$_{6}$P$_{4}$ and Li$_{2}$Co$_{12}$P$_{7}$, J. Solid State Chem. 202, 227–233 (2013), doi:10.1016/j.jssc.2013.03.032.

Prototype Generator

aflow --proto=A6BC4_hP11_187_jk_a_ck --params=$a,c/a,x_{3},x_{4},x_{5}$

Species:

Running:

Output: