AFLOW Prototype: A4B24C13_cI82_217_c_deg_ag-001
This structure originally had the label A4B24C13_cI82_217_c_deg_ag. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)
Links to this page
https://aflow.org/p/5PAV
or
https://aflow.org/p/A4B24C13_cI82_217_c_deg_ag-001
or
PDF Version
Prototype | AsCu$_{12}$S$_{13}$ |
AFLOW prototype label | A4B24C13_cI82_217_c_deg_ag-001 |
Mineral name | tennantite |
ICSD | 403458 |
Pearson symbol | cI82 |
Space group number | 217 |
Space group symbol | $I\overline{4}3m$ |
AFLOW prototype command |
aflow --proto=A4B24C13_cI82_217_c_deg_ag-001
--params=$a, \allowbreak x_{2}, \allowbreak x_{4}, \allowbreak x_{5}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak z_{6}$ |
Cu$_{14}$Sb$_{4}$S$_{13}$ (tetrahedrite)
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (2a) | S I |
$\mathbf{B_{2}}$ | = | $2 x_{2} \, \mathbf{a}_{1}+2 x_{2} \, \mathbf{a}_{2}+2 x_{2} \, \mathbf{a}_{3}$ | = | $a x_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ | (8c) | As I |
$\mathbf{B_{3}}$ | = | $- 2 x_{2} \, \mathbf{a}_{3}$ | = | $- a x_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}+a x_{2} \,\mathbf{\hat{z}}$ | (8c) | As I |
$\mathbf{B_{4}}$ | = | $- 2 x_{2} \, \mathbf{a}_{2}$ | = | $- a x_{2} \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ | (8c) | As I |
$\mathbf{B_{5}}$ | = | $- 2 x_{2} \, \mathbf{a}_{1}$ | = | $a x_{2} \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}- a x_{2} \,\mathbf{\hat{z}}$ | (8c) | As I |
$\mathbf{B_{6}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}$ | (12d) | Cu I |
$\mathbf{B_{7}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ | (12d) | Cu I |
$\mathbf{B_{8}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ | (12d) | Cu I |
$\mathbf{B_{9}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}$ | (12d) | Cu I |
$\mathbf{B_{10}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ | (12d) | Cu I |
$\mathbf{B_{11}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ | (12d) | Cu I |
$\mathbf{B_{12}}$ | = | $x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ | = | $a x_{4} \,\mathbf{\hat{x}}$ | (12e) | Cu II |
$\mathbf{B_{13}}$ | = | $- x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{x}}$ | (12e) | Cu II |
$\mathbf{B_{14}}$ | = | $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{3}$ | = | $a x_{4} \,\mathbf{\hat{y}}$ | (12e) | Cu II |
$\mathbf{B_{15}}$ | = | $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{y}}$ | (12e) | Cu II |
$\mathbf{B_{16}}$ | = | $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}$ | = | $a x_{4} \,\mathbf{\hat{z}}$ | (12e) | Cu II |
$\mathbf{B_{17}}$ | = | $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}$ | = | $- a x_{4} \,\mathbf{\hat{z}}$ | (12e) | Cu II |
$\mathbf{B_{18}}$ | = | $\left(x_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} + z_{5}\right) \, \mathbf{a}_{2}+2 x_{5} \, \mathbf{a}_{3}$ | = | $a x_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}+a z_{5} \,\mathbf{\hat{z}}$ | (24g) | Cu III |
$\mathbf{B_{19}}$ | = | $- \left(x_{5} - z_{5}\right) \, \mathbf{a}_{1}- \left(x_{5} - z_{5}\right) \, \mathbf{a}_{2}- 2 x_{5} \, \mathbf{a}_{3}$ | = | $- a x_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}+a z_{5} \,\mathbf{\hat{z}}$ | (24g) | Cu III |
$\mathbf{B_{20}}$ | = | $\left(x_{5} - z_{5}\right) \, \mathbf{a}_{1}- \left(x_{5} + z_{5}\right) \, \mathbf{a}_{2}$ | = | $- a x_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}- a z_{5} \,\mathbf{\hat{z}}$ | (24g) | Cu III |
$\mathbf{B_{21}}$ | = | $- \left(x_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} - z_{5}\right) \, \mathbf{a}_{2}$ | = | $a x_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}- a z_{5} \,\mathbf{\hat{z}}$ | (24g) | Cu III |
$\mathbf{B_{22}}$ | = | $2 x_{5} \, \mathbf{a}_{1}+\left(x_{5} + z_{5}\right) \, \mathbf{a}_{2}+\left(x_{5} + z_{5}\right) \, \mathbf{a}_{3}$ | = | $a z_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ | (24g) | Cu III |
$\mathbf{B_{23}}$ | = | $- 2 x_{5} \, \mathbf{a}_{1}- \left(x_{5} - z_{5}\right) \, \mathbf{a}_{2}- \left(x_{5} - z_{5}\right) \, \mathbf{a}_{3}$ | = | $a z_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ | (24g) | Cu III |
$\mathbf{B_{24}}$ | = | $\left(x_{5} - z_{5}\right) \, \mathbf{a}_{2}- \left(x_{5} + z_{5}\right) \, \mathbf{a}_{3}$ | = | $- a z_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ | (24g) | Cu III |
$\mathbf{B_{25}}$ | = | $- \left(x_{5} + z_{5}\right) \, \mathbf{a}_{2}+\left(x_{5} - z_{5}\right) \, \mathbf{a}_{3}$ | = | $- a z_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ | (24g) | Cu III |
$\mathbf{B_{26}}$ | = | $\left(x_{5} + z_{5}\right) \, \mathbf{a}_{1}+2 x_{5} \, \mathbf{a}_{2}+\left(x_{5} + z_{5}\right) \, \mathbf{a}_{3}$ | = | $a x_{5} \,\mathbf{\hat{x}}+a z_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ | (24g) | Cu III |
$\mathbf{B_{27}}$ | = | $- \left(x_{5} - z_{5}\right) \, \mathbf{a}_{1}- 2 x_{5} \, \mathbf{a}_{2}- \left(x_{5} - z_{5}\right) \, \mathbf{a}_{3}$ | = | $- a x_{5} \,\mathbf{\hat{x}}+a z_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ | (24g) | Cu III |
$\mathbf{B_{28}}$ | = | $- \left(x_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} - z_{5}\right) \, \mathbf{a}_{3}$ | = | $a x_{5} \,\mathbf{\hat{x}}- a z_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ | (24g) | Cu III |
$\mathbf{B_{29}}$ | = | $\left(x_{5} - z_{5}\right) \, \mathbf{a}_{1}- \left(x_{5} + z_{5}\right) \, \mathbf{a}_{3}$ | = | $- a x_{5} \,\mathbf{\hat{x}}- a z_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ | (24g) | Cu III |
$\mathbf{B_{30}}$ | = | $\left(x_{6} + z_{6}\right) \, \mathbf{a}_{1}+\left(x_{6} + z_{6}\right) \, \mathbf{a}_{2}+2 x_{6} \, \mathbf{a}_{3}$ | = | $a x_{6} \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}+a z_{6} \,\mathbf{\hat{z}}$ | (24g) | S II |
$\mathbf{B_{31}}$ | = | $- \left(x_{6} - z_{6}\right) \, \mathbf{a}_{1}- \left(x_{6} - z_{6}\right) \, \mathbf{a}_{2}- 2 x_{6} \, \mathbf{a}_{3}$ | = | $- a x_{6} \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}+a z_{6} \,\mathbf{\hat{z}}$ | (24g) | S II |
$\mathbf{B_{32}}$ | = | $\left(x_{6} - z_{6}\right) \, \mathbf{a}_{1}- \left(x_{6} + z_{6}\right) \, \mathbf{a}_{2}$ | = | $- a x_{6} \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}- a z_{6} \,\mathbf{\hat{z}}$ | (24g) | S II |
$\mathbf{B_{33}}$ | = | $- \left(x_{6} + z_{6}\right) \, \mathbf{a}_{1}+\left(x_{6} - z_{6}\right) \, \mathbf{a}_{2}$ | = | $a x_{6} \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}- a z_{6} \,\mathbf{\hat{z}}$ | (24g) | S II |
$\mathbf{B_{34}}$ | = | $2 x_{6} \, \mathbf{a}_{1}+\left(x_{6} + z_{6}\right) \, \mathbf{a}_{2}+\left(x_{6} + z_{6}\right) \, \mathbf{a}_{3}$ | = | $a z_{6} \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}+a x_{6} \,\mathbf{\hat{z}}$ | (24g) | S II |
$\mathbf{B_{35}}$ | = | $- 2 x_{6} \, \mathbf{a}_{1}- \left(x_{6} - z_{6}\right) \, \mathbf{a}_{2}- \left(x_{6} - z_{6}\right) \, \mathbf{a}_{3}$ | = | $a z_{6} \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}- a x_{6} \,\mathbf{\hat{z}}$ | (24g) | S II |
$\mathbf{B_{36}}$ | = | $\left(x_{6} - z_{6}\right) \, \mathbf{a}_{2}- \left(x_{6} + z_{6}\right) \, \mathbf{a}_{3}$ | = | $- a z_{6} \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}+a x_{6} \,\mathbf{\hat{z}}$ | (24g) | S II |
$\mathbf{B_{37}}$ | = | $- \left(x_{6} + z_{6}\right) \, \mathbf{a}_{2}+\left(x_{6} - z_{6}\right) \, \mathbf{a}_{3}$ | = | $- a z_{6} \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}- a x_{6} \,\mathbf{\hat{z}}$ | (24g) | S II |
$\mathbf{B_{38}}$ | = | $\left(x_{6} + z_{6}\right) \, \mathbf{a}_{1}+2 x_{6} \, \mathbf{a}_{2}+\left(x_{6} + z_{6}\right) \, \mathbf{a}_{3}$ | = | $a x_{6} \,\mathbf{\hat{x}}+a z_{6} \,\mathbf{\hat{y}}+a x_{6} \,\mathbf{\hat{z}}$ | (24g) | S II |
$\mathbf{B_{39}}$ | = | $- \left(x_{6} - z_{6}\right) \, \mathbf{a}_{1}- 2 x_{6} \, \mathbf{a}_{2}- \left(x_{6} - z_{6}\right) \, \mathbf{a}_{3}$ | = | $- a x_{6} \,\mathbf{\hat{x}}+a z_{6} \,\mathbf{\hat{y}}- a x_{6} \,\mathbf{\hat{z}}$ | (24g) | S II |
$\mathbf{B_{40}}$ | = | $- \left(x_{6} + z_{6}\right) \, \mathbf{a}_{1}+\left(x_{6} - z_{6}\right) \, \mathbf{a}_{3}$ | = | $a x_{6} \,\mathbf{\hat{x}}- a z_{6} \,\mathbf{\hat{y}}- a x_{6} \,\mathbf{\hat{z}}$ | (24g) | S II |
$\mathbf{B_{41}}$ | = | $\left(x_{6} - z_{6}\right) \, \mathbf{a}_{1}- \left(x_{6} + z_{6}\right) \, \mathbf{a}_{3}$ | = | $- a x_{6} \,\mathbf{\hat{x}}- a z_{6} \,\mathbf{\hat{y}}+a x_{6} \,\mathbf{\hat{z}}$ | (24g) | S II |