Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A3B_tI8_139_ad_b-001

This structure originally had the label A3B_tI8_139_bd_a. Calls to that address will be redirected here.

If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)

Links to this page

https://aflow.org/p/7W3W
or https://aflow.org/p/A3B_tI8_139_ad_b-001
or PDF Version

Al$_{3}$Ti ($D0_{22}$) Structure: A3B_tI8_139_ad_b-001

Picture of Structure; Click for Big Picture
Prototype Al$_{3}$Ti
AFLOW prototype label A3B_tI8_139_ad_b-001
Strukturbericht designation $D0_{22}$
ICSD 58189
Pearson symbol tI8
Space group number 139
Space group symbol $I4/mmm$
AFLOW prototype command aflow --proto=A3B_tI8_139_ad_b-001
--params=$a, \allowbreak c/a$

Other compounds with this structure

Al$_{3}$Hf,  Al$_{3-x}$Fe$_{x}$Mo,  Al$_{3}$Nb,  Al$_{3}$Sc,  Al$_{3}$Ta,  Al$_{3}$V,  Ga$_{3}$Hf,  Ga$_{3}$Nb,  Ga$_{3}$Ti,  $\alpha$-NbPd$_{3}$,  Ni$_{3}$V,  Pd$_{3}$Nb,  Pd$_{3}$Ta,  Pd$_{3}$V,  Pt$_{3}$V


  • When $c=2a$ the atoms are on the sites of a face-centered cubic lattice. When $c/a=1/\sqrt{2}$, this becomes the cubic $D0_{3}$ structure.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (2a) Al I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{2}c \,\mathbf{\hat{z}}$ (2b) Ti I
$\mathbf{B_{3}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (4d) Al II
$\mathbf{B_{4}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (4d) Al II

References

  • P. Norby and N. Christensen, Preparation and Structure of Al$_3$Ti, Acta Chem. Scand. pp. 157–159 (1986), doi:10.3891/acta.chem.scand.40a-0157.
  • J. Nic, S. Zhang, and D. Mikkola, Observations on the systematic alloying of Al3Ti with fourth period elements to yield cubic phases, Scripta Metallurgica et Materialia 24, 1099–1104 (1990), doi:10.1016/0956-716X(90)90306-2.

Found in

  • W. B. Pearson, A Handbook of Lattice Spacings and Structures of Metals and Alloys, Volume 2, International Series of Monographs on Metal Physics and Physical Metallurgy, vol. 8 (Pergamon Press, Oxford, London, Edinburgh, New York, Toronto, Sydney, Paris, Braunschweig, 1967).

Prototype Generator

aflow --proto=A3B_tI8_139_ad_b --params=$a,c/a$

Species:

Running:

Output: