Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A3B_cP8_223_c_a-001

This structure originally had the label A3B_cP8_223_c_a. Calls to that address will be redirected here.

If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)

Links to this page

https://aflow.org/p/7MHE
or https://aflow.org/p/A3B_cP8_223_c_a-001
or PDF Version

Cr$_{3}$Si ($A15$) Structure: A3B_cP8_223_c_a-001

Picture of Structure; Click for Big Picture
Prototype Cr$_{3}$Si
AFLOW prototype label A3B_cP8_223_c_a-001
Strukturbericht designation $A15$
ICSD 53218
Pearson symbol cP8
Space group number 223
Space group symbol $Pm\overline{3}n$
AFLOW prototype command aflow --proto=A3B_cP8_223_c_a-001
--params=$a$

Other compounds with this structure

$\beta$-W,  Cr$_{3}$Ga,  Cr$_{3}$Ge,  Cr$_{3}$Ir,  Cr$_{3}$O,  Cr$_{3}$Os,  Cr$_{3}$Pt,  Cr$_{3}$Rh,  Cr$_{3}$Ru,  Cr$_{3}$Si,  Mo$_{3}$Al,  Mo$_{3}$Be,  Mo$_{3}$Ga,  Mo$_{3}$Ge,  Mo$_{3}$Ir,  Mo$_{3}$O,  Mo$_{3}$Os,  Mo$_{3}$Pt,  Mo$_{3}$Si,  Mo$_{3}$Sn,  Nb$_{3}$Al,  Nb$_{3}$Au,  Nb$_{3}$Bi,  Nb$_{3}$Ga,  Nb$_{3}$Ge,  Nb$_{3}$In,  Nb$_{3}$Ir,  Nb$_{3}$Os,  Nb$_{3}$Pb,  Nb$_{3}$Pt,  Nb$_{3}$Rh,  Nb$_{3}$Sb,  Nb$_{3}$Sn,  Ta$_{3}$Au,  Ta$_{3}$Sb,  Ta$_{3}$Sn,  Ti$_{3}$Au,  Ti$_{3}$Hg,  Ti$_{3}$Ir,  Ti$_{3}$Sb,  Tl$_{3}$Pt,  V$_{3}$Al,  $\alpha$-UH$_{3}$,  V$_{3}$As,  V$_{3}$Au,  V$_{3}$Cd,  V$_{3}$Co,  V$_{3}$Ga,  V$_{3}$Ge,  V$_{3}$Ir,  V$_{3}$Ni,  V$_{3}$Pb,  V$_{3}$Pd,  V$_{3}$Pt,  V$_{3}$Rh,  V$_{3}$Sb,  V$_{3}$Si,  V$_{3}$Sn,  W$_{3}$O,  W$_{3}$Si,  Zr$_{3}$Au,  Zr$_{3}$Hg,  Zr$_{3}$Sn


  • The A Strukturbericht designation comes from the fact that this is also the structure of $\beta$–W.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&a \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (2a) Si I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (2a) Si I
$\mathbf{B_{3}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (6c) Cr I
$\mathbf{B_{4}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (6c) Cr I
$\mathbf{B_{5}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}$ (6c) Cr I
$\mathbf{B_{6}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}$ (6c) Cr I
$\mathbf{B_{7}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (6c) Cr I
$\mathbf{B_{8}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{3}{4}a \,\mathbf{\hat{z}}$ (6c) Cr I

References

  • W. Jauch, A. J. Schultz, and G. Heger, Single-crystal time-of-flight neutron diffraction of Cr$_3$Si and MnF$_2$ comparison with monochromatic-beam techniques, J. Appl. Crystallogr. 20, 117–119 (1987), doi:10.1107/S002188988708703X.

Found in

  • P. Villars and L. Calvert, Pearson's Handbook of Crystallographic Data for Intermetallic Phases (ASM International, Materials Park, OH, 1991), 2nd edn.

Prototype Generator

aflow --proto=A3B_cP8_223_c_a --params=$a$

Species:

Running:

Output: