Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A3B9C2_oC56_63_ae_cfgh_g-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/1YQJ
or https://aflow.org/p/A3B9C2_oC56_63_ae_cfgh_g-001
or PDF Version

Y$_{2}$Ga$_{9}$Co$_{3}$ Structure: A3B9C2_oC56_63_ae_cfgh_g-001

Picture of Structure; Click for Big Picture
Prototype Co$_{3}$Ga$_{9}$Y$_{2}$
AFLOW prototype label A3B9C2_oC56_63_ae_cfgh_g-001
ICSD 623242
Pearson symbol oC56
Space group number 63
Space group symbol $Cmcm$
AFLOW prototype command aflow --proto=A3B9C2_oC56_63_ae_cfgh_g-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak y_{2}, \allowbreak x_{3}, \allowbreak y_{4}, \allowbreak z_{4}, \allowbreak x_{5}, \allowbreak y_{5}, \allowbreak x_{6}, \allowbreak y_{6}, \allowbreak x_{7}, \allowbreak y_{7}, \allowbreak z_{7}$

Other compounds with this structure

Dy$_{2}$Ga$_{9}$Co$_{3}$,  Er$_{2}$Ga$_{9}$Co$_{3}$,  Gd$_{2}$Ga$_{9}$Co$_{3}$,  Lu$_{2}$Ga$_{9}$Co$_{3}$,  Nd$_{2}$Ga$_{9}$Co$_{3}$,  Sm$_{2}$Ga$_{9}$Co$_{3}$,  Tb$_{2}$Ga$_{9}$Co$_{3}$,  Tm$_{2}$Ga$_{9}$Co$_{3}$,  Yb$_{2}$Ga$_{9}$Co$_{3}$


\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (4a) Co I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}c \,\mathbf{\hat{z}}$ (4a) Co I
$\mathbf{B_{3}}$ = $- y_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $b y_{2} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (4c) Ga I
$\mathbf{B_{4}}$ = $y_{2} \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- b y_{2} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (4c) Ga I
$\mathbf{B_{5}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}$ = $a x_{3} \,\mathbf{\hat{x}}$ (8e) Co II
$\mathbf{B_{6}}$ = $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (8e) Co II
$\mathbf{B_{7}}$ = $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}$ = $- a x_{3} \,\mathbf{\hat{x}}$ (8e) Co II
$\mathbf{B_{8}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (8e) Co II
$\mathbf{B_{9}}$ = $- y_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $b y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (8f) Ga II
$\mathbf{B_{10}}$ = $y_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- b y_{4} \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) Ga II
$\mathbf{B_{11}}$ = $- y_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $b y_{4} \,\mathbf{\hat{y}}- c \left(z_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (8f) Ga II
$\mathbf{B_{12}}$ = $y_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $- b y_{4} \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (8f) Ga II
$\mathbf{B_{13}}$ = $\left(x_{5} - y_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} + y_{5}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+b y_{5} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (8g) Ga III
$\mathbf{B_{14}}$ = $- \left(x_{5} - y_{5}\right) \, \mathbf{a}_{1}- \left(x_{5} + y_{5}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}- b y_{5} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (8g) Ga III
$\mathbf{B_{15}}$ = $- \left(x_{5} + y_{5}\right) \, \mathbf{a}_{1}- \left(x_{5} - y_{5}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}+b y_{5} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (8g) Ga III
$\mathbf{B_{16}}$ = $\left(x_{5} + y_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} - y_{5}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}- b y_{5} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (8g) Ga III
$\mathbf{B_{17}}$ = $\left(x_{6} - y_{6}\right) \, \mathbf{a}_{1}+\left(x_{6} + y_{6}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}+b y_{6} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (8g) Y I
$\mathbf{B_{18}}$ = $- \left(x_{6} - y_{6}\right) \, \mathbf{a}_{1}- \left(x_{6} + y_{6}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}- b y_{6} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (8g) Y I
$\mathbf{B_{19}}$ = $- \left(x_{6} + y_{6}\right) \, \mathbf{a}_{1}- \left(x_{6} - y_{6}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}+b y_{6} \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (8g) Y I
$\mathbf{B_{20}}$ = $\left(x_{6} + y_{6}\right) \, \mathbf{a}_{1}+\left(x_{6} - y_{6}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}- b y_{6} \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (8g) Y I
$\mathbf{B_{21}}$ = $\left(x_{7} - y_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} + y_{7}\right) \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}+b y_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (16h) Ga IV
$\mathbf{B_{22}}$ = $- \left(x_{7} - y_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} + y_{7}\right) \, \mathbf{a}_{2}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}- b y_{7} \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16h) Ga IV
$\mathbf{B_{23}}$ = $- \left(x_{7} + y_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} - y_{7}\right) \, \mathbf{a}_{2}- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}+b y_{7} \,\mathbf{\hat{y}}- c \left(z_{7} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16h) Ga IV
$\mathbf{B_{24}}$ = $\left(x_{7} + y_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} - y_{7}\right) \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}- b y_{7} \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ (16h) Ga IV
$\mathbf{B_{25}}$ = $- \left(x_{7} - y_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} + y_{7}\right) \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}- b y_{7} \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ (16h) Ga IV
$\mathbf{B_{26}}$ = $\left(x_{7} - y_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} + y_{7}\right) \, \mathbf{a}_{2}- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}+b y_{7} \,\mathbf{\hat{y}}- c \left(z_{7} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16h) Ga IV
$\mathbf{B_{27}}$ = $\left(x_{7} + y_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} - y_{7}\right) \, \mathbf{a}_{2}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}- b y_{7} \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16h) Ga IV
$\mathbf{B_{28}}$ = $- \left(x_{7} + y_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} - y_{7}\right) \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}+b y_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (16h) Ga IV

References

  • Y. N. Grin', R. E. Gladyshevskii, O. M. Sichevich, V. E. Zavodnik, Y. P. Yarmolyuk, and I. V. Rozhdestvenskaya, Crystal structure of R$_{2}$Ga$_{9}$Co$_{3}$ compounds ($R$ = Nd, Sm, Gd, Y, Tb, Dy, Ho, Er, Tm, Yb, Lu), Sov. Phys. Crystallogr. 29, 528–530 (1984).

Found in

  • R. E. Gladyshevskii, K. Cenzual, and E. Parthé, Y$_{2}$Co$_{3}$Al$_{9}$ with Y$_{2}$Co$_{3}$Ga$_{9}$ type structure: an intergrowth of CsCl- and Th$_{3}$Pd$_{5}$-type slabs, J. Alloys Compd. 182, 165–170 (1992), doi:10.1016/0925-8388(92)90584-V.

Prototype Generator

aflow --proto=A3B9C2_oC56_63_ae_cfgh_g --params=$a,b/a,c/a,y_{2},x_{3},y_{4},z_{4},x_{5},y_{5},x_{6},y_{6},x_{7},y_{7},z_{7}$

Species:

Running:

Output: