Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A2BC8_tI176_110_2b_b_8b-001

This structure originally had the label A2BC8_tI176_110_2b_b_8b. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)

Links to this page

https://aflow.org/p/29CG
or https://aflow.org/p/A2BC8_tI176_110_2b_b_8b-001
or PDF Version

Be[BH$_{4}$]$_{2}$ Structure: A2BC8_tI176_110_2b_b_8b-001

Picture of Structure; Click for Big Picture
Prototype B$_{2}$BeH$_{8}$
AFLOW prototype label A2BC8_tI176_110_2b_b_8b-001
ICSD 10315
Pearson symbol tI176
Space group number 110
Space group symbol $I4_1cd$
AFLOW prototype command aflow --proto=A2BC8_tI176_110_2b_b_8b-001
--params=$a, \allowbreak c/a, \allowbreak x_{1}, \allowbreak y_{1}, \allowbreak z_{1}, \allowbreak x_{2}, \allowbreak y_{2}, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak y_{3}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak y_{4}, \allowbreak z_{4}, \allowbreak x_{5}, \allowbreak y_{5}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak y_{6}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak y_{7}, \allowbreak z_{7}, \allowbreak x_{8}, \allowbreak y_{8}, \allowbreak z_{8}, \allowbreak x_{9}, \allowbreak y_{9}, \allowbreak z_{9}, \allowbreak x_{10}, \allowbreak y_{10}, \allowbreak z_{10}, \allowbreak x_{11}, \allowbreak y_{11}, \allowbreak z_{11}$

  • Space group $I4_{1}cd$ #110 allows an arbitary placement of the $z$-axis origin, and we put a beryllium atom there by setting $z_{3} = 0$.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\left(y_{1} + z_{1}\right) \, \mathbf{a}_{1}+\left(x_{1} + z_{1}\right) \, \mathbf{a}_{2}+\left(x_{1} + y_{1}\right) \, \mathbf{a}_{3}$ = $a x_{1} \,\mathbf{\hat{x}}+a y_{1} \,\mathbf{\hat{y}}+c z_{1} \,\mathbf{\hat{z}}$ (16b) B I
$\mathbf{B_{2}}$ = $- \left(y_{1} - z_{1}\right) \, \mathbf{a}_{1}- \left(x_{1} - z_{1}\right) \, \mathbf{a}_{2}- \left(x_{1} + y_{1}\right) \, \mathbf{a}_{3}$ = $- a x_{1} \,\mathbf{\hat{x}}- a y_{1} \,\mathbf{\hat{y}}+c z_{1} \,\mathbf{\hat{z}}$ (16b) B I
$\mathbf{B_{3}}$ = $\left(x_{1} + z_{1} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(- y_{1} + z_{1} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{1} - y_{1} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{1} \,\mathbf{\hat{x}}+a \left(x_{1} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{1} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16b) B I
$\mathbf{B_{4}}$ = $\left(- x_{1} + z_{1} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(y_{1} + z_{1} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(- x_{1} + y_{1} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{1} \,\mathbf{\hat{x}}- a \left(x_{1} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{1} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16b) B I
$\mathbf{B_{5}}$ = $\left(- y_{1} + z_{1} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{1} + z_{1} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{1} - y_{1}\right) \, \mathbf{a}_{3}$ = $a x_{1} \,\mathbf{\hat{x}}- a y_{1} \,\mathbf{\hat{y}}+c \left(z_{1} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16b) B I
$\mathbf{B_{6}}$ = $\left(y_{1} + z_{1} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{1} + z_{1} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{1} - y_{1}\right) \, \mathbf{a}_{3}$ = $- a x_{1} \,\mathbf{\hat{x}}+a y_{1} \,\mathbf{\hat{y}}+c \left(z_{1} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16b) B I
$\mathbf{B_{7}}$ = $\left(- x_{1} + z_{1} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(- y_{1} + z_{1} + \frac{3}{4}\right) \, \mathbf{a}_{2}- \left(x_{1} + y_{1} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{1} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{1} \,\mathbf{\hat{y}}+c \left(z_{1} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16b) B I
$\mathbf{B_{8}}$ = $\left(x_{1} + z_{1} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(y_{1} + z_{1} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(x_{1} + y_{1} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{1} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{1} \,\mathbf{\hat{y}}+c \left(z_{1} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16b) B I
$\mathbf{B_{9}}$ = $\left(y_{2} + z_{2}\right) \, \mathbf{a}_{1}+\left(x_{2} + z_{2}\right) \, \mathbf{a}_{2}+\left(x_{2} + y_{2}\right) \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}+a y_{2} \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (16b) B II
$\mathbf{B_{10}}$ = $- \left(y_{2} - z_{2}\right) \, \mathbf{a}_{1}- \left(x_{2} - z_{2}\right) \, \mathbf{a}_{2}- \left(x_{2} + y_{2}\right) \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}- a y_{2} \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (16b) B II
$\mathbf{B_{11}}$ = $\left(x_{2} + z_{2} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(- y_{2} + z_{2} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{2} - y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{2} \,\mathbf{\hat{x}}+a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16b) B II
$\mathbf{B_{12}}$ = $\left(- x_{2} + z_{2} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(y_{2} + z_{2} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(- x_{2} + y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{2} \,\mathbf{\hat{x}}- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16b) B II
$\mathbf{B_{13}}$ = $\left(- y_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{2} - y_{2}\right) \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}- a y_{2} \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16b) B II
$\mathbf{B_{14}}$ = $\left(y_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{2} - y_{2}\right) \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}+a y_{2} \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16b) B II
$\mathbf{B_{15}}$ = $\left(- x_{2} + z_{2} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(- y_{2} + z_{2} + \frac{3}{4}\right) \, \mathbf{a}_{2}- \left(x_{2} + y_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{2} \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16b) B II
$\mathbf{B_{16}}$ = $\left(x_{2} + z_{2} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(y_{2} + z_{2} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(x_{2} + y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{2} \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16b) B II
$\mathbf{B_{17}}$ = $\left(y_{3} + z_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} + z_{3}\right) \, \mathbf{a}_{2}+\left(x_{3} + y_{3}\right) \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (16b) Be I
$\mathbf{B_{18}}$ = $- \left(y_{3} - z_{3}\right) \, \mathbf{a}_{1}- \left(x_{3} - z_{3}\right) \, \mathbf{a}_{2}- \left(x_{3} + y_{3}\right) \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (16b) Be I
$\mathbf{B_{19}}$ = $\left(x_{3} + z_{3} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(- y_{3} + z_{3} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{3} - y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{3} \,\mathbf{\hat{x}}+a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16b) Be I
$\mathbf{B_{20}}$ = $\left(- x_{3} + z_{3} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(y_{3} + z_{3} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(- x_{3} + y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{3} \,\mathbf{\hat{x}}- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16b) Be I
$\mathbf{B_{21}}$ = $\left(- y_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{3} - y_{3}\right) \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}- a y_{3} \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16b) Be I
$\mathbf{B_{22}}$ = $\left(y_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{3} - y_{3}\right) \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}+a y_{3} \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16b) Be I
$\mathbf{B_{23}}$ = $\left(- x_{3} + z_{3} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(- y_{3} + z_{3} + \frac{3}{4}\right) \, \mathbf{a}_{2}- \left(x_{3} + y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{3} \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16b) Be I
$\mathbf{B_{24}}$ = $\left(x_{3} + z_{3} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(y_{3} + z_{3} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(x_{3} + y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{3} \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16b) Be I
$\mathbf{B_{25}}$ = $\left(y_{4} + z_{4}\right) \, \mathbf{a}_{1}+\left(x_{4} + z_{4}\right) \, \mathbf{a}_{2}+\left(x_{4} + y_{4}\right) \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (16b) H I
$\mathbf{B_{26}}$ = $- \left(y_{4} - z_{4}\right) \, \mathbf{a}_{1}- \left(x_{4} - z_{4}\right) \, \mathbf{a}_{2}- \left(x_{4} + y_{4}\right) \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (16b) H I
$\mathbf{B_{27}}$ = $\left(x_{4} + z_{4} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(- y_{4} + z_{4} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{4} - y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{4} \,\mathbf{\hat{x}}+a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16b) H I
$\mathbf{B_{28}}$ = $\left(- x_{4} + z_{4} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(y_{4} + z_{4} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(- x_{4} + y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{4} \,\mathbf{\hat{x}}- a \left(x_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16b) H I
$\mathbf{B_{29}}$ = $\left(- y_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{4} - y_{4}\right) \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}- a y_{4} \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16b) H I
$\mathbf{B_{30}}$ = $\left(y_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{4} + z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{4} - y_{4}\right) \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}+a y_{4} \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16b) H I
$\mathbf{B_{31}}$ = $\left(- x_{4} + z_{4} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(- y_{4} + z_{4} + \frac{3}{4}\right) \, \mathbf{a}_{2}- \left(x_{4} + y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16b) H I
$\mathbf{B_{32}}$ = $\left(x_{4} + z_{4} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(y_{4} + z_{4} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(x_{4} + y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16b) H I
$\mathbf{B_{33}}$ = $\left(y_{5} + z_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} + z_{5}\right) \, \mathbf{a}_{2}+\left(x_{5} + y_{5}\right) \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+a y_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (16b) H II
$\mathbf{B_{34}}$ = $- \left(y_{5} - z_{5}\right) \, \mathbf{a}_{1}- \left(x_{5} - z_{5}\right) \, \mathbf{a}_{2}- \left(x_{5} + y_{5}\right) \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}- a y_{5} \,\mathbf{\hat{y}}+c z_{5} \,\mathbf{\hat{z}}$ (16b) H II
$\mathbf{B_{35}}$ = $\left(x_{5} + z_{5} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(- y_{5} + z_{5} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{5} - y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{5} \,\mathbf{\hat{x}}+a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16b) H II
$\mathbf{B_{36}}$ = $\left(- x_{5} + z_{5} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(y_{5} + z_{5} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(- x_{5} + y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{5} \,\mathbf{\hat{x}}- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16b) H II
$\mathbf{B_{37}}$ = $\left(- y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{5} - y_{5}\right) \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}- a y_{5} \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16b) H II
$\mathbf{B_{38}}$ = $\left(y_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{5} + z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{5} - y_{5}\right) \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}+a y_{5} \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16b) H II
$\mathbf{B_{39}}$ = $\left(- x_{5} + z_{5} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(- y_{5} + z_{5} + \frac{3}{4}\right) \, \mathbf{a}_{2}- \left(x_{5} + y_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16b) H II
$\mathbf{B_{40}}$ = $\left(x_{5} + z_{5} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(y_{5} + z_{5} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(x_{5} + y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{5} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16b) H II
$\mathbf{B_{41}}$ = $\left(y_{6} + z_{6}\right) \, \mathbf{a}_{1}+\left(x_{6} + z_{6}\right) \, \mathbf{a}_{2}+\left(x_{6} + y_{6}\right) \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}+a y_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (16b) H III
$\mathbf{B_{42}}$ = $- \left(y_{6} - z_{6}\right) \, \mathbf{a}_{1}- \left(x_{6} - z_{6}\right) \, \mathbf{a}_{2}- \left(x_{6} + y_{6}\right) \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}- a y_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (16b) H III
$\mathbf{B_{43}}$ = $\left(x_{6} + z_{6} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(- y_{6} + z_{6} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{6} - y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{6} \,\mathbf{\hat{x}}+a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16b) H III
$\mathbf{B_{44}}$ = $\left(- x_{6} + z_{6} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(y_{6} + z_{6} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(- x_{6} + y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{6} \,\mathbf{\hat{x}}- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16b) H III
$\mathbf{B_{45}}$ = $\left(- y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{6} - y_{6}\right) \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}- a y_{6} \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16b) H III
$\mathbf{B_{46}}$ = $\left(y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{6} - y_{6}\right) \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}+a y_{6} \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16b) H III
$\mathbf{B_{47}}$ = $\left(- x_{6} + z_{6} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(- y_{6} + z_{6} + \frac{3}{4}\right) \, \mathbf{a}_{2}- \left(x_{6} + y_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{6} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16b) H III
$\mathbf{B_{48}}$ = $\left(x_{6} + z_{6} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(y_{6} + z_{6} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(x_{6} + y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{6} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16b) H III
$\mathbf{B_{49}}$ = $\left(y_{7} + z_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} + z_{7}\right) \, \mathbf{a}_{2}+\left(x_{7} + y_{7}\right) \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}+a y_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (16b) H IV
$\mathbf{B_{50}}$ = $- \left(y_{7} - z_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} - z_{7}\right) \, \mathbf{a}_{2}- \left(x_{7} + y_{7}\right) \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}- a y_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (16b) H IV
$\mathbf{B_{51}}$ = $\left(x_{7} + z_{7} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(- y_{7} + z_{7} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{7} - y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{7} \,\mathbf{\hat{x}}+a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16b) H IV
$\mathbf{B_{52}}$ = $\left(- x_{7} + z_{7} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(y_{7} + z_{7} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(- x_{7} + y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{7} \,\mathbf{\hat{x}}- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16b) H IV
$\mathbf{B_{53}}$ = $\left(- y_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{7} - y_{7}\right) \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}- a y_{7} \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16b) H IV
$\mathbf{B_{54}}$ = $\left(y_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{7} - y_{7}\right) \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}+a y_{7} \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16b) H IV
$\mathbf{B_{55}}$ = $\left(- x_{7} + z_{7} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(- y_{7} + z_{7} + \frac{3}{4}\right) \, \mathbf{a}_{2}- \left(x_{7} + y_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{7} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16b) H IV
$\mathbf{B_{56}}$ = $\left(x_{7} + z_{7} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(y_{7} + z_{7} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(x_{7} + y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{7} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16b) H IV
$\mathbf{B_{57}}$ = $\left(y_{8} + z_{8}\right) \, \mathbf{a}_{1}+\left(x_{8} + z_{8}\right) \, \mathbf{a}_{2}+\left(x_{8} + y_{8}\right) \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}+a y_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (16b) H V
$\mathbf{B_{58}}$ = $- \left(y_{8} - z_{8}\right) \, \mathbf{a}_{1}- \left(x_{8} - z_{8}\right) \, \mathbf{a}_{2}- \left(x_{8} + y_{8}\right) \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}- a y_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (16b) H V
$\mathbf{B_{59}}$ = $\left(x_{8} + z_{8} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(- y_{8} + z_{8} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{8} - y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{8} \,\mathbf{\hat{x}}+a \left(x_{8} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16b) H V
$\mathbf{B_{60}}$ = $\left(- x_{8} + z_{8} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(y_{8} + z_{8} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(- x_{8} + y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{8} \,\mathbf{\hat{x}}- a \left(x_{8} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16b) H V
$\mathbf{B_{61}}$ = $\left(- y_{8} + z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{8} + z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{8} - y_{8}\right) \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}- a y_{8} \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16b) H V
$\mathbf{B_{62}}$ = $\left(y_{8} + z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{8} + z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{8} - y_{8}\right) \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}+a y_{8} \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16b) H V
$\mathbf{B_{63}}$ = $\left(- x_{8} + z_{8} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(- y_{8} + z_{8} + \frac{3}{4}\right) \, \mathbf{a}_{2}- \left(x_{8} + y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{8} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16b) H V
$\mathbf{B_{64}}$ = $\left(x_{8} + z_{8} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(y_{8} + z_{8} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(x_{8} + y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{8} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16b) H V
$\mathbf{B_{65}}$ = $\left(y_{9} + z_{9}\right) \, \mathbf{a}_{1}+\left(x_{9} + z_{9}\right) \, \mathbf{a}_{2}+\left(x_{9} + y_{9}\right) \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{x}}+a y_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (16b) H VI
$\mathbf{B_{66}}$ = $- \left(y_{9} - z_{9}\right) \, \mathbf{a}_{1}- \left(x_{9} - z_{9}\right) \, \mathbf{a}_{2}- \left(x_{9} + y_{9}\right) \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{x}}- a y_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (16b) H VI
$\mathbf{B_{67}}$ = $\left(x_{9} + z_{9} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(- y_{9} + z_{9} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{9} - y_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{9} \,\mathbf{\hat{x}}+a \left(x_{9} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{9} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16b) H VI
$\mathbf{B_{68}}$ = $\left(- x_{9} + z_{9} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(y_{9} + z_{9} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(- x_{9} + y_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{9} \,\mathbf{\hat{x}}- a \left(x_{9} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{9} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16b) H VI
$\mathbf{B_{69}}$ = $\left(- y_{9} + z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{9} + z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{9} - y_{9}\right) \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{x}}- a y_{9} \,\mathbf{\hat{y}}+c \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16b) H VI
$\mathbf{B_{70}}$ = $\left(y_{9} + z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{9} + z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{9} - y_{9}\right) \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{x}}+a y_{9} \,\mathbf{\hat{y}}+c \left(z_{9} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16b) H VI
$\mathbf{B_{71}}$ = $\left(- x_{9} + z_{9} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(- y_{9} + z_{9} + \frac{3}{4}\right) \, \mathbf{a}_{2}- \left(x_{9} + y_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{9} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{9} \,\mathbf{\hat{y}}+c \left(z_{9} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16b) H VI
$\mathbf{B_{72}}$ = $\left(x_{9} + z_{9} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(y_{9} + z_{9} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(x_{9} + y_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{9} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{9} \,\mathbf{\hat{y}}+c \left(z_{9} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16b) H VI
$\mathbf{B_{73}}$ = $\left(y_{10} + z_{10}\right) \, \mathbf{a}_{1}+\left(x_{10} + z_{10}\right) \, \mathbf{a}_{2}+\left(x_{10} + y_{10}\right) \, \mathbf{a}_{3}$ = $a x_{10} \,\mathbf{\hat{x}}+a y_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (16b) H VII
$\mathbf{B_{74}}$ = $- \left(y_{10} - z_{10}\right) \, \mathbf{a}_{1}- \left(x_{10} - z_{10}\right) \, \mathbf{a}_{2}- \left(x_{10} + y_{10}\right) \, \mathbf{a}_{3}$ = $- a x_{10} \,\mathbf{\hat{x}}- a y_{10} \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (16b) H VII
$\mathbf{B_{75}}$ = $\left(x_{10} + z_{10} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(- y_{10} + z_{10} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{10} - y_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{10} \,\mathbf{\hat{x}}+a \left(x_{10} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{10} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16b) H VII
$\mathbf{B_{76}}$ = $\left(- x_{10} + z_{10} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(y_{10} + z_{10} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(- x_{10} + y_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{10} \,\mathbf{\hat{x}}- a \left(x_{10} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{10} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16b) H VII
$\mathbf{B_{77}}$ = $\left(- y_{10} + z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{10} + z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{10} - y_{10}\right) \, \mathbf{a}_{3}$ = $a x_{10} \,\mathbf{\hat{x}}- a y_{10} \,\mathbf{\hat{y}}+c \left(z_{10} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16b) H VII
$\mathbf{B_{78}}$ = $\left(y_{10} + z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{10} + z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{10} - y_{10}\right) \, \mathbf{a}_{3}$ = $- a x_{10} \,\mathbf{\hat{x}}+a y_{10} \,\mathbf{\hat{y}}+c \left(z_{10} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16b) H VII
$\mathbf{B_{79}}$ = $\left(- x_{10} + z_{10} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(- y_{10} + z_{10} + \frac{3}{4}\right) \, \mathbf{a}_{2}- \left(x_{10} + y_{10} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{10} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{10} \,\mathbf{\hat{y}}+c \left(z_{10} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16b) H VII
$\mathbf{B_{80}}$ = $\left(x_{10} + z_{10} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(y_{10} + z_{10} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(x_{10} + y_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{10} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{10} \,\mathbf{\hat{y}}+c \left(z_{10} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16b) H VII
$\mathbf{B_{81}}$ = $\left(y_{11} + z_{11}\right) \, \mathbf{a}_{1}+\left(x_{11} + z_{11}\right) \, \mathbf{a}_{2}+\left(x_{11} + y_{11}\right) \, \mathbf{a}_{3}$ = $a x_{11} \,\mathbf{\hat{x}}+a y_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ (16b) H VIII
$\mathbf{B_{82}}$ = $- \left(y_{11} - z_{11}\right) \, \mathbf{a}_{1}- \left(x_{11} - z_{11}\right) \, \mathbf{a}_{2}- \left(x_{11} + y_{11}\right) \, \mathbf{a}_{3}$ = $- a x_{11} \,\mathbf{\hat{x}}- a y_{11} \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ (16b) H VIII
$\mathbf{B_{83}}$ = $\left(x_{11} + z_{11} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(- y_{11} + z_{11} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(x_{11} - y_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a y_{11} \,\mathbf{\hat{x}}+a \left(x_{11} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{11} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16b) H VIII
$\mathbf{B_{84}}$ = $\left(- x_{11} + z_{11} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\left(y_{11} + z_{11} + \frac{1}{4}\right) \, \mathbf{a}_{2}+\left(- x_{11} + y_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a y_{11} \,\mathbf{\hat{x}}- a \left(x_{11} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{11} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16b) H VIII
$\mathbf{B_{85}}$ = $\left(- y_{11} + z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{11} + z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{11} - y_{11}\right) \, \mathbf{a}_{3}$ = $a x_{11} \,\mathbf{\hat{x}}- a y_{11} \,\mathbf{\hat{y}}+c \left(z_{11} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16b) H VIII
$\mathbf{B_{86}}$ = $\left(y_{11} + z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{11} + z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{11} - y_{11}\right) \, \mathbf{a}_{3}$ = $- a x_{11} \,\mathbf{\hat{x}}+a y_{11} \,\mathbf{\hat{y}}+c \left(z_{11} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (16b) H VIII
$\mathbf{B_{87}}$ = $\left(- x_{11} + z_{11} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(- y_{11} + z_{11} + \frac{3}{4}\right) \, \mathbf{a}_{2}- \left(x_{11} + y_{11} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(y_{11} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a x_{11} \,\mathbf{\hat{y}}+c \left(z_{11} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16b) H VIII
$\mathbf{B_{88}}$ = $\left(x_{11} + z_{11} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\left(y_{11} + z_{11} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(x_{11} + y_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(y_{11} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a x_{11} \,\mathbf{\hat{y}}+c \left(z_{11} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ (16b) H VIII

References

  • D. S. Marynick and W. N. Lipscomb, Crystal Structure of Beryllium Borohydride, Inorg. Chem. 11, 820–823 (1972), doi:10.1021/ic50110a033.

Found in

  • P. Villars and K. Cenzual, Pearson's Crystal Data – Crystal Structure Database for Inorganic Compounds (2013). ASM International.

Prototype Generator

aflow --proto=A2BC8_tI176_110_2b_b_8b --params=$a,c/a,x_{1},y_{1},z_{1},x_{2},y_{2},z_{2},x_{3},y_{3},z_{3},x_{4},y_{4},z_{4},x_{5},y_{5},z_{5},x_{6},y_{6},z_{6},x_{7},y_{7},z_{7},x_{8},y_{8},z_{8},x_{9},y_{9},z_{9},x_{10},y_{10},z_{10},x_{11},y_{11},z_{11}$

Species:

Running:

Output: