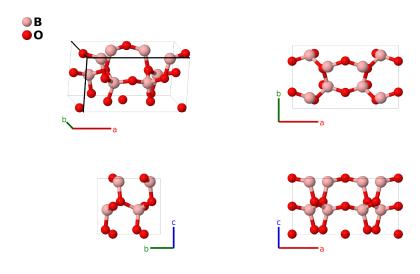
Orthorhombic B_2O_3 Structure: $A2B3_oC20_36_b_ab-001$

Cite this page as: H. Eckert, S. Divilov, A. Zettel, M. J. Mehl, D. Hicks, and S. Curtarolo, *The AFLOW Library of Crystallographic Prototypes: Part 4*. In preparation.

https://aflow.org/p/KLS9

 $https://aflow.org/p/A2B3_oC20_36_b_ab-001$



Prototype B_2O_3

AFLOW prototype label A2B3_oC20_36_b_ab-001

 $\begin{array}{ccc} \textbf{ICSD} & 34685 \\ \textbf{Pearson symbol} & \text{oC20} \\ \textbf{Space group number} & 36 \\ \end{array}$

Space group symbol $Cmc2_1$

AFLOW prototype command aflow --proto=A2B3_oC20_36_b_ab-001

--params= $a, b/a, c/a, y_1, z_1, x_2, y_2, z_2, x_3, y_3, z_3$

- This is the high-pressure structure of B_2O_3 , stable above ≈ 2 GPa. The ground state is trigonal.
- Data was taken a 6.5 GPa. (Prewitt, 1968) give the structure in the $Ccm2_1$ setting of space group #36. We used FINDSYM to transform it to the standard $Cmc2_1$ setting. This space group allows for an arbitrary placement of the origin of the z-axis, which we fixed by setting $z_1 = 0$ for the O-I (2a) Wyckoff position.
- The ICSD 34685 website entry for this structure states that it was refined at ambient pressure, but the data is consistent with the high-pressure structure shown here.

Base-centered Orthorhombic primitive vectors

$$\mathbf{a_1} = \frac{1}{2}a\,\hat{\mathbf{x}} - \frac{1}{2}b\,\hat{\mathbf{y}}$$

$$\mathbf{a_2} = \frac{1}{2}a\,\hat{\mathbf{x}} + \frac{1}{2}b\,\hat{\mathbf{y}}$$

$$\mathbf{a_3} = c\,\hat{\mathbf{z}}$$

Basis vectors

		Lattice coordinates		Cartesian coordinates	Wyckoff position	Atom type
$\mathbf{B_1}$	=	$-y_1\mathbf{a}_1 + y_1\mathbf{a}_2 + z_1\mathbf{a}_3$	=	$by_1\mathbf{\hat{y}}+cz_1\mathbf{\hat{z}}$	(4a)	ΟI
$\mathbf{B_2}$	=	$y_1 \mathbf{a}_1 - y_1 \mathbf{a}_2 + \left(z_1 + \frac{1}{2}\right) \mathbf{a}_3$	=	$-by_1\mathbf{\hat{y}}+c\left(z_1+\frac{1}{2}\right)\mathbf{\hat{z}}$	(4a)	ΟI
B_3	=	$(x_2 - y_2) \mathbf{a}_1 + (x_2 + y_2) \mathbf{a}_2 + z_2 \mathbf{a}_3$	=	$ax_2\hat{\mathbf{x}} + by_2\hat{\mathbf{y}} + cz_2\hat{\mathbf{z}}$	(8b)	ВІ
B_4	=	$-(x_2-y_2) \mathbf{a}_1 - (x_2+y_2) \mathbf{a}_2 + (z_2+\frac{1}{2}) \mathbf{a}_3$	=	$-ax_2\hat{\mathbf{x}} - by_2\hat{\mathbf{y}} + c\left(z_2 + \frac{1}{2}\right)\hat{\mathbf{z}}$	(8b)	ВІ
B_5	=	$(x_2 + y_2) \mathbf{a}_1 + (x_2 - y_2) \mathbf{a}_2 + (z_2 + \frac{1}{2}) \mathbf{a}_3$	=	$ax_2 \hat{\mathbf{x}} - by_2 \hat{\mathbf{y}} + c \left(z_2 + \frac{1}{2}\right) \hat{\mathbf{z}}$	(8b)	ВІ
B_{6}	=	$-(x_2+y_2) \mathbf{a}_1 - (x_2-y_2) \mathbf{a}_2 + z_2 \mathbf{a}_3$	=	$-ax_2\hat{\mathbf{x}} + by_2\hat{\mathbf{y}} + cz_2\hat{\mathbf{z}}$	(8b)	ВІ
B_{7}	=	$(x_3 - y_3) \mathbf{a}_1 + (x_3 + y_3) \mathbf{a}_2 + z_3 \mathbf{a}_3$	=	$ax_3\mathbf{\hat{x}} + by_3\mathbf{\hat{y}} + cz_3\mathbf{\hat{z}}$	(8b)	O II
B_8	=	$-(x_3-y_3) \mathbf{a}_1 - (x_3+y_3) \mathbf{a}_2 + (z_3+\frac{1}{2}) \mathbf{a}_3$	=	$-ax_3\mathbf{\hat{x}} - by_3\mathbf{\hat{y}} + c\left(z_3 + \frac{1}{2}\right)\mathbf{\hat{z}}$	(8b)	O II
B_9	=	$(x_3 + y_3) \mathbf{a}_1 + (x_3 - y_3) \mathbf{a}_2 + (z_3 + \frac{1}{2}) \mathbf{a}_3$	=	$ax_3 \hat{\mathbf{x}} - by_3 \hat{\mathbf{y}} + c \left(z_3 + \frac{1}{2}\right) \hat{\mathbf{z}}$	(8b)	O II
B_{10}	=	$-(x_3+y_3) \mathbf{a}_1 - (x_3-y_3) \mathbf{a}_2 + z_3 \mathbf{a}_3$	=	$-ax_3\mathbf{\hat{x}} + by_3\mathbf{\hat{y}} + cz_3\mathbf{\hat{z}}$	(8b)	O II

References

[1] C. T. Prewitt and R. D. Shannon, Crystal Structure of a High-Pressure Form of B₂O₃, Acta Crystallogr. Sect. B **24**, 869–874 (1968), doi:10.1107/S0567740868003304.

Found in

[1] H. Effenberger, C. L. Lengauer, and E. Parthé, Trigonal B₂O₃ with Higher Space-Group Symmetry: Results of a Reevaluation, Monatsh. Chem. **132**, 1515–1517 (2001), doi:10.1007/s007060170008.