AFLOW Prototype: A11B3_oI28_71_bf2m_ai-001
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/TNYL
or
https://aflow.org/p/A11B3_oI28_71_bf2m_ai-001
or
PDF Version
Prototype | Al$_{11}$La$_{3}$ |
AFLOW prototype label | A11B3_oI28_71_bf2m_ai-001 |
ICSD | 57937 |
Pearson symbol | oI28 |
Space group number | 71 |
Space group symbol | $Immm$ |
AFLOW prototype command |
aflow --proto=A11B3_oI28_71_bf2m_ai-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak x_{3}, \allowbreak z_{4}, \allowbreak x_{5}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak z_{6}$ |
Ce$_{3}$Al$_{11}$, (La$_{\frac12}$Nd$_{\frac12}$)$_{3}$Al$_{11}$, Sr$_{3}$In$_{11}$, Yb$_{3}$Zn$_{11}$, Yb$_{3}$(Al$_{x}$Zn$_{11-x}$, Ce$_{3}$(Al$_{9.13}$Ga$_{1.78}$Ni$_{0.08}$)
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (2a) | La I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}$ | (2b) | Al I |
$\mathbf{B_{3}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a x_{3} \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}$ | (4f) | Al II |
$\mathbf{B_{4}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a x_{3} \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}$ | (4f) | Al II |
$\mathbf{B_{5}}$ | = | $z_{4} \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}$ | = | $c z_{4} \,\mathbf{\hat{z}}$ | (4i) | La II |
$\mathbf{B_{6}}$ | = | $- z_{4} \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{2}$ | = | $- c z_{4} \,\mathbf{\hat{z}}$ | (4i) | La II |
$\mathbf{B_{7}}$ | = | $z_{5} \, \mathbf{a}_{1}+\left(x_{5} + z_{5}\right) \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ | = | $a x_{5} \,\mathbf{\hat{x}}+c z_{5} \,\mathbf{\hat{z}}$ | (8m) | Al III |
$\mathbf{B_{8}}$ | = | $z_{5} \, \mathbf{a}_{1}- \left(x_{5} - z_{5}\right) \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ | = | $- a x_{5} \,\mathbf{\hat{x}}+c z_{5} \,\mathbf{\hat{z}}$ | (8m) | Al III |
$\mathbf{B_{9}}$ | = | $- z_{5} \, \mathbf{a}_{1}- \left(x_{5} + z_{5}\right) \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ | = | $- a x_{5} \,\mathbf{\hat{x}}- c z_{5} \,\mathbf{\hat{z}}$ | (8m) | Al III |
$\mathbf{B_{10}}$ | = | $- z_{5} \, \mathbf{a}_{1}+\left(x_{5} - z_{5}\right) \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ | = | $a x_{5} \,\mathbf{\hat{x}}- c z_{5} \,\mathbf{\hat{z}}$ | (8m) | Al III |
$\mathbf{B_{11}}$ | = | $z_{6} \, \mathbf{a}_{1}+\left(x_{6} + z_{6}\right) \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ | = | $a x_{6} \,\mathbf{\hat{x}}+c z_{6} \,\mathbf{\hat{z}}$ | (8m) | Al IV |
$\mathbf{B_{12}}$ | = | $z_{6} \, \mathbf{a}_{1}- \left(x_{6} - z_{6}\right) \, \mathbf{a}_{2}- x_{6} \, \mathbf{a}_{3}$ | = | $- a x_{6} \,\mathbf{\hat{x}}+c z_{6} \,\mathbf{\hat{z}}$ | (8m) | Al IV |
$\mathbf{B_{13}}$ | = | $- z_{6} \, \mathbf{a}_{1}- \left(x_{6} + z_{6}\right) \, \mathbf{a}_{2}- x_{6} \, \mathbf{a}_{3}$ | = | $- a x_{6} \,\mathbf{\hat{x}}- c z_{6} \,\mathbf{\hat{z}}$ | (8m) | Al IV |
$\mathbf{B_{14}}$ | = | $- z_{6} \, \mathbf{a}_{1}+\left(x_{6} - z_{6}\right) \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ | = | $a x_{6} \,\mathbf{\hat{x}}- c z_{6} \,\mathbf{\hat{z}}$ | (8m) | Al IV |