AFLOW Prototype: A10B4C3_tI34_139_c2eg_2e_ae-001
This structure originally had the label A10B4C3_tI34_139_c2eg_2e_ae. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)
Links to this page
https://aflow.org/p/TJ17
or
https://aflow.org/p/A10B4C3_tI34_139_c2eg_2e_ae-001
or
PDF Version
Prototype | O$_{10}$Sr$_{4}$Ti$_{3}$ |
AFLOW prototype label | A10B4C3_tI34_139_c2eg_2e_ae-001 |
ICSD | 34630 |
Pearson symbol | tI34 |
Space group number | 139 |
Space group symbol | $I4/mmm$ |
AFLOW prototype command |
aflow --proto=A10B4C3_tI34_139_c2eg_2e_ae-001
--params=$a, \allowbreak c/a, \allowbreak z_{3}, \allowbreak z_{4}, \allowbreak z_{5}, \allowbreak z_{6}, \allowbreak z_{7}, \allowbreak z_{8}$ |
La$_{4}$Ni$_{3}$O$_{10}$, Sr$_{4}$V$_{3}$O$_{10}$, K$_{2}$La$_{2}$Ti$_{3}$O$_{10}$, Li$_{2}$Eu$_{2}$Ti$_{3}$O$_{10}$, Na$_{2}$Eu$_{2}$Ti$_{3}$O$_{10}$, Na$_{2}$Sr$_{2}$Nb$_{2}$MnO$_{10}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (2a) | Ti I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}$ | (4c) | O I |
$\mathbf{B_{3}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}$ | (4c) | O I |
$\mathbf{B_{4}}$ | = | $z_{3} \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{2}$ | = | $c z_{3} \,\mathbf{\hat{z}}$ | (4e) | O II |
$\mathbf{B_{5}}$ | = | $- z_{3} \, \mathbf{a}_{1}- z_{3} \, \mathbf{a}_{2}$ | = | $- c z_{3} \,\mathbf{\hat{z}}$ | (4e) | O II |
$\mathbf{B_{6}}$ | = | $z_{4} \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}$ | = | $c z_{4} \,\mathbf{\hat{z}}$ | (4e) | O III |
$\mathbf{B_{7}}$ | = | $- z_{4} \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{2}$ | = | $- c z_{4} \,\mathbf{\hat{z}}$ | (4e) | O III |
$\mathbf{B_{8}}$ | = | $z_{5} \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}$ | = | $c z_{5} \,\mathbf{\hat{z}}$ | (4e) | Sr I |
$\mathbf{B_{9}}$ | = | $- z_{5} \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}$ | = | $- c z_{5} \,\mathbf{\hat{z}}$ | (4e) | Sr I |
$\mathbf{B_{10}}$ | = | $z_{6} \, \mathbf{a}_{1}+z_{6} \, \mathbf{a}_{2}$ | = | $c z_{6} \,\mathbf{\hat{z}}$ | (4e) | Sr II |
$\mathbf{B_{11}}$ | = | $- z_{6} \, \mathbf{a}_{1}- z_{6} \, \mathbf{a}_{2}$ | = | $- c z_{6} \,\mathbf{\hat{z}}$ | (4e) | Sr II |
$\mathbf{B_{12}}$ | = | $z_{7} \, \mathbf{a}_{1}+z_{7} \, \mathbf{a}_{2}$ | = | $c z_{7} \,\mathbf{\hat{z}}$ | (4e) | Ti II |
$\mathbf{B_{13}}$ | = | $- z_{7} \, \mathbf{a}_{1}- z_{7} \, \mathbf{a}_{2}$ | = | $- c z_{7} \,\mathbf{\hat{z}}$ | (4e) | Ti II |
$\mathbf{B_{14}}$ | = | $\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{8} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ | (8g) | O IV |
$\mathbf{B_{15}}$ | = | $z_{8} \, \mathbf{a}_{1}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+c z_{8} \,\mathbf{\hat{z}}$ | (8g) | O IV |
$\mathbf{B_{16}}$ | = | $- \left(z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{8} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ | (8g) | O IV |
$\mathbf{B_{17}}$ | = | $- z_{8} \, \mathbf{a}_{1}- \left(z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- c z_{8} \,\mathbf{\hat{z}}$ | (8g) | O IV |