Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A10B4C3_tI34_139_c2eg_2e_ae-001

This structure originally had the label A10B4C3_tI34_139_c2eg_2e_ae. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/TJ17
or https://aflow.org/p/A10B4C3_tI34_139_c2eg_2e_ae-001
or PDF Version

Sr$_{4}$Ti$_{3}$O$_{10}$ Structure: A10B4C3_tI34_139_c2eg_2e_ae-001

Picture of Structure; Click for Big Picture
Prototype O$_{10}$Sr$_{4}$Ti$_{3}$
AFLOW prototype label A10B4C3_tI34_139_c2eg_2e_ae-001
ICSD 34630
Pearson symbol tI34
Space group number 139
Space group symbol $I4/mmm$
AFLOW prototype command aflow --proto=A10B4C3_tI34_139_c2eg_2e_ae-001
--params=$a, \allowbreak c/a, \allowbreak z_{3}, \allowbreak z_{4}, \allowbreak z_{5}, \allowbreak z_{6}, \allowbreak z_{7}, \allowbreak z_{8}$

Other compounds with this structure

La$_{4}$Ni$_{3}$O$_{10}$,  Sr$_{4}$V$_{3}$O$_{10}$,  K$_{2}$La$_{2}$Ti$_{3}$O$_{10}$,  Li$_{2}$Eu$_{2}$Ti$_{3}$O$_{10}$,  Na$_{2}$Eu$_{2}$Ti$_{3}$O$_{10}$,  Na$_{2}$Sr$_{2}$Nb$_{2}$MnO$_{10}$


\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (2a) Ti I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}$ (4c) O I
$\mathbf{B_{3}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}$ (4c) O I
$\mathbf{B_{4}}$ = $z_{3} \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{2}$ = $c z_{3} \,\mathbf{\hat{z}}$ (4e) O II
$\mathbf{B_{5}}$ = $- z_{3} \, \mathbf{a}_{1}- z_{3} \, \mathbf{a}_{2}$ = $- c z_{3} \,\mathbf{\hat{z}}$ (4e) O II
$\mathbf{B_{6}}$ = $z_{4} \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}$ = $c z_{4} \,\mathbf{\hat{z}}$ (4e) O III
$\mathbf{B_{7}}$ = $- z_{4} \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{2}$ = $- c z_{4} \,\mathbf{\hat{z}}$ (4e) O III
$\mathbf{B_{8}}$ = $z_{5} \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}$ = $c z_{5} \,\mathbf{\hat{z}}$ (4e) Sr I
$\mathbf{B_{9}}$ = $- z_{5} \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}$ = $- c z_{5} \,\mathbf{\hat{z}}$ (4e) Sr I
$\mathbf{B_{10}}$ = $z_{6} \, \mathbf{a}_{1}+z_{6} \, \mathbf{a}_{2}$ = $c z_{6} \,\mathbf{\hat{z}}$ (4e) Sr II
$\mathbf{B_{11}}$ = $- z_{6} \, \mathbf{a}_{1}- z_{6} \, \mathbf{a}_{2}$ = $- c z_{6} \,\mathbf{\hat{z}}$ (4e) Sr II
$\mathbf{B_{12}}$ = $z_{7} \, \mathbf{a}_{1}+z_{7} \, \mathbf{a}_{2}$ = $c z_{7} \,\mathbf{\hat{z}}$ (4e) Ti II
$\mathbf{B_{13}}$ = $- z_{7} \, \mathbf{a}_{1}- z_{7} \, \mathbf{a}_{2}$ = $- c z_{7} \,\mathbf{\hat{z}}$ (4e) Ti II
$\mathbf{B_{14}}$ = $\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{8} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (8g) O IV
$\mathbf{B_{15}}$ = $z_{8} \, \mathbf{a}_{1}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+c z_{8} \,\mathbf{\hat{z}}$ (8g) O IV
$\mathbf{B_{16}}$ = $- \left(z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{8} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ (8g) O IV
$\mathbf{B_{17}}$ = $- z_{8} \, \mathbf{a}_{1}- \left(z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- c z_{8} \,\mathbf{\hat{z}}$ (8g) O IV

References

  • S. N. Ruddlesden and P. Popper, The compound Sr$_{3}$Ti$_{2}$O$_{7}$ and its structure, Acta Cryst. 11, 54–55 (1958), doi:10.1107/S0365110X58000128.

Found in

  • Wikipedia, Ruddlesden-Popper phase. A$_3$B$_2$X$_7$ series.

Prototype Generator

aflow --proto=A10B4C3_tI34_139_c2eg_2e_ae --params=$a,c/a,z_{3},z_{4},z_{5},z_{6},z_{7},z_{8}$

Species:

Running:

Output: