Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A10B11_tI84_139_dehim_eh2n-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/HN10
or https://aflow.org/p/A10B11_tI84_139_dehim_eh2n-001
or PDF Version

Ho$_{11}$Ge$_{10}$ Structure: A10B11_tI84_139_dehim_eh2n-001

Picture of Structure; Click for Big Picture
Prototype Ge$_{10}$Ho$_{11}$
AFLOW prototype label A10B11_tI84_139_dehim_eh2n-001
ICSD 43052
Pearson symbol tI84
Space group number 139
Space group symbol $I4/mmm$
AFLOW prototype command aflow --proto=A10B11_tI84_139_dehim_eh2n-001
--params=$a, \allowbreak c/a, \allowbreak z_{2}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak x_{5}, \allowbreak x_{6}, \allowbreak x_{7}, \allowbreak z_{7}, \allowbreak y_{8}, \allowbreak z_{8}, \allowbreak y_{9}, \allowbreak z_{9}$

Other compounds with this structure

Ba$_{11}$Bi$_{10}$,  Ca$_{11}$Bi$_{10}$,  Ca$_{11}$Sb$_{10}$,  Eu$_{11}$Sb$_{10}$,  Sr$_{11}$Bi$_{10}$,  Sr$_{11}$Sb$_{10}$,  Yb$_{11}$Sb$_{10}$,  Yb$_{11}$Sb$_{10}$


\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (4d) Ge I
$\mathbf{B_{2}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (4d) Ge I
$\mathbf{B_{3}}$ = $z_{2} \, \mathbf{a}_{1}+z_{2} \, \mathbf{a}_{2}$ = $c z_{2} \,\mathbf{\hat{z}}$ (4e) Ge II
$\mathbf{B_{4}}$ = $- z_{2} \, \mathbf{a}_{1}- z_{2} \, \mathbf{a}_{2}$ = $- c z_{2} \,\mathbf{\hat{z}}$ (4e) Ge II
$\mathbf{B_{5}}$ = $z_{3} \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{2}$ = $c z_{3} \,\mathbf{\hat{z}}$ (4e) Ho I
$\mathbf{B_{6}}$ = $- z_{3} \, \mathbf{a}_{1}- z_{3} \, \mathbf{a}_{2}$ = $- c z_{3} \,\mathbf{\hat{z}}$ (4e) Ho I
$\mathbf{B_{7}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+2 x_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}$ (8h) Ge III
$\mathbf{B_{8}}$ = $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- 2 x_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}$ (8h) Ge III
$\mathbf{B_{9}}$ = $x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}$ = $- a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}$ (8h) Ge III
$\mathbf{B_{10}}$ = $- x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}$ = $a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}$ (8h) Ge III
$\mathbf{B_{11}}$ = $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+2 x_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}$ (8h) Ho II
$\mathbf{B_{12}}$ = $- x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}- 2 x_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}$ (8h) Ho II
$\mathbf{B_{13}}$ = $x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}$ = $- a x_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}$ (8h) Ho II
$\mathbf{B_{14}}$ = $- x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}$ = $a x_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}$ (8h) Ho II
$\mathbf{B_{15}}$ = $x_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}$ (8i) Ge IV
$\mathbf{B_{16}}$ = $- x_{6} \, \mathbf{a}_{2}- x_{6} \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}$ (8i) Ge IV
$\mathbf{B_{17}}$ = $x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{y}}$ (8i) Ge IV
$\mathbf{B_{18}}$ = $- x_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{y}}$ (8i) Ge IV
$\mathbf{B_{19}}$ = $\left(x_{7} + z_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} + z_{7}\right) \, \mathbf{a}_{2}+2 x_{7} \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (16m) Ge V
$\mathbf{B_{20}}$ = $- \left(x_{7} - z_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} - z_{7}\right) \, \mathbf{a}_{2}- 2 x_{7} \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (16m) Ge V
$\mathbf{B_{21}}$ = $\left(x_{7} + z_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} - z_{7}\right) \, \mathbf{a}_{2}$ = $- a x_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (16m) Ge V
$\mathbf{B_{22}}$ = $- \left(x_{7} - z_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} + z_{7}\right) \, \mathbf{a}_{2}$ = $a x_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (16m) Ge V
$\mathbf{B_{23}}$ = $\left(x_{7} - z_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} + z_{7}\right) \, \mathbf{a}_{2}$ = $- a x_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ (16m) Ge V
$\mathbf{B_{24}}$ = $- \left(x_{7} + z_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} - z_{7}\right) \, \mathbf{a}_{2}$ = $a x_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ (16m) Ge V
$\mathbf{B_{25}}$ = $\left(x_{7} - z_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} - z_{7}\right) \, \mathbf{a}_{2}+2 x_{7} \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ (16m) Ge V
$\mathbf{B_{26}}$ = $- \left(x_{7} + z_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} + z_{7}\right) \, \mathbf{a}_{2}- 2 x_{7} \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ (16m) Ge V
$\mathbf{B_{27}}$ = $\left(y_{8} + z_{8}\right) \, \mathbf{a}_{1}+z_{8} \, \mathbf{a}_{2}+y_{8} \, \mathbf{a}_{3}$ = $a y_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (16n) Ho III
$\mathbf{B_{28}}$ = $- \left(y_{8} - z_{8}\right) \, \mathbf{a}_{1}+z_{8} \, \mathbf{a}_{2}- y_{8} \, \mathbf{a}_{3}$ = $- a y_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (16n) Ho III
$\mathbf{B_{29}}$ = $z_{8} \, \mathbf{a}_{1}- \left(y_{8} - z_{8}\right) \, \mathbf{a}_{2}- y_{8} \, \mathbf{a}_{3}$ = $- a y_{8} \,\mathbf{\hat{x}}+c z_{8} \,\mathbf{\hat{z}}$ (16n) Ho III
$\mathbf{B_{30}}$ = $z_{8} \, \mathbf{a}_{1}+\left(y_{8} + z_{8}\right) \, \mathbf{a}_{2}+y_{8} \, \mathbf{a}_{3}$ = $a y_{8} \,\mathbf{\hat{x}}+c z_{8} \,\mathbf{\hat{z}}$ (16n) Ho III
$\mathbf{B_{31}}$ = $\left(y_{8} - z_{8}\right) \, \mathbf{a}_{1}- z_{8} \, \mathbf{a}_{2}+y_{8} \, \mathbf{a}_{3}$ = $a y_{8} \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ (16n) Ho III
$\mathbf{B_{32}}$ = $- \left(y_{8} + z_{8}\right) \, \mathbf{a}_{1}- z_{8} \, \mathbf{a}_{2}- y_{8} \, \mathbf{a}_{3}$ = $- a y_{8} \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ (16n) Ho III
$\mathbf{B_{33}}$ = $- z_{8} \, \mathbf{a}_{1}+\left(y_{8} - z_{8}\right) \, \mathbf{a}_{2}+y_{8} \, \mathbf{a}_{3}$ = $a y_{8} \,\mathbf{\hat{x}}- c z_{8} \,\mathbf{\hat{z}}$ (16n) Ho III
$\mathbf{B_{34}}$ = $- z_{8} \, \mathbf{a}_{1}- \left(y_{8} + z_{8}\right) \, \mathbf{a}_{2}- y_{8} \, \mathbf{a}_{3}$ = $- a y_{8} \,\mathbf{\hat{x}}- c z_{8} \,\mathbf{\hat{z}}$ (16n) Ho III
$\mathbf{B_{35}}$ = $\left(y_{9} + z_{9}\right) \, \mathbf{a}_{1}+z_{9} \, \mathbf{a}_{2}+y_{9} \, \mathbf{a}_{3}$ = $a y_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (16n) Ho IV
$\mathbf{B_{36}}$ = $- \left(y_{9} - z_{9}\right) \, \mathbf{a}_{1}+z_{9} \, \mathbf{a}_{2}- y_{9} \, \mathbf{a}_{3}$ = $- a y_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (16n) Ho IV
$\mathbf{B_{37}}$ = $z_{9} \, \mathbf{a}_{1}- \left(y_{9} - z_{9}\right) \, \mathbf{a}_{2}- y_{9} \, \mathbf{a}_{3}$ = $- a y_{9} \,\mathbf{\hat{x}}+c z_{9} \,\mathbf{\hat{z}}$ (16n) Ho IV
$\mathbf{B_{38}}$ = $z_{9} \, \mathbf{a}_{1}+\left(y_{9} + z_{9}\right) \, \mathbf{a}_{2}+y_{9} \, \mathbf{a}_{3}$ = $a y_{9} \,\mathbf{\hat{x}}+c z_{9} \,\mathbf{\hat{z}}$ (16n) Ho IV
$\mathbf{B_{39}}$ = $\left(y_{9} - z_{9}\right) \, \mathbf{a}_{1}- z_{9} \, \mathbf{a}_{2}+y_{9} \, \mathbf{a}_{3}$ = $a y_{9} \,\mathbf{\hat{y}}- c z_{9} \,\mathbf{\hat{z}}$ (16n) Ho IV
$\mathbf{B_{40}}$ = $- \left(y_{9} + z_{9}\right) \, \mathbf{a}_{1}- z_{9} \, \mathbf{a}_{2}- y_{9} \, \mathbf{a}_{3}$ = $- a y_{9} \,\mathbf{\hat{y}}- c z_{9} \,\mathbf{\hat{z}}$ (16n) Ho IV
$\mathbf{B_{41}}$ = $- z_{9} \, \mathbf{a}_{1}+\left(y_{9} - z_{9}\right) \, \mathbf{a}_{2}+y_{9} \, \mathbf{a}_{3}$ = $a y_{9} \,\mathbf{\hat{x}}- c z_{9} \,\mathbf{\hat{z}}$ (16n) Ho IV
$\mathbf{B_{42}}$ = $- z_{9} \, \mathbf{a}_{1}- \left(y_{9} + z_{9}\right) \, \mathbf{a}_{2}- y_{9} \, \mathbf{a}_{3}$ = $- a y_{9} \,\mathbf{\hat{x}}- c z_{9} \,\mathbf{\hat{z}}$ (16n) Ho IV

References

  • G. S. Smith, Q. Johnson, and A. G. Tharp, The Crystal Structure of Ho$_{11}$Ga$_{10}$, Acta Cryst. 23, 640–644 (1967), doi:10.1107/S0365110X67003329.

Found in


Prototype Generator

aflow --proto=A10B11_tI84_139_dehim_eh2n --params=$a,c/a,z_{2},z_{3},x_{4},x_{5},x_{6},x_{7},z_{7},y_{8},z_{8},y_{9},z_{9}$

Species:

Running:

Output: