AFLOW Prototype: A10B11_tI84_139_dehim_eh2n-001
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/HN10
or
https://aflow.org/p/A10B11_tI84_139_dehim_eh2n-001
or
PDF Version
Prototype | Ge$_{10}$Ho$_{11}$ |
AFLOW prototype label | A10B11_tI84_139_dehim_eh2n-001 |
ICSD | 43052 |
Pearson symbol | tI84 |
Space group number | 139 |
Space group symbol | $I4/mmm$ |
AFLOW prototype command |
aflow --proto=A10B11_tI84_139_dehim_eh2n-001
--params=$a, \allowbreak c/a, \allowbreak z_{2}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak x_{5}, \allowbreak x_{6}, \allowbreak x_{7}, \allowbreak z_{7}, \allowbreak y_{8}, \allowbreak z_{8}, \allowbreak y_{9}, \allowbreak z_{9}$ |
Ba$_{11}$Bi$_{10}$, Ca$_{11}$Bi$_{10}$, Ca$_{11}$Sb$_{10}$, Eu$_{11}$Sb$_{10}$, Sr$_{11}$Bi$_{10}$, Sr$_{11}$Sb$_{10}$, Yb$_{11}$Sb$_{10}$, Yb$_{11}$Sb$_{10}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (4d) | Ge I |
$\mathbf{B_{2}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (4d) | Ge I |
$\mathbf{B_{3}}$ | = | $z_{2} \, \mathbf{a}_{1}+z_{2} \, \mathbf{a}_{2}$ | = | $c z_{2} \,\mathbf{\hat{z}}$ | (4e) | Ge II |
$\mathbf{B_{4}}$ | = | $- z_{2} \, \mathbf{a}_{1}- z_{2} \, \mathbf{a}_{2}$ | = | $- c z_{2} \,\mathbf{\hat{z}}$ | (4e) | Ge II |
$\mathbf{B_{5}}$ | = | $z_{3} \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{2}$ | = | $c z_{3} \,\mathbf{\hat{z}}$ | (4e) | Ho I |
$\mathbf{B_{6}}$ | = | $- z_{3} \, \mathbf{a}_{1}- z_{3} \, \mathbf{a}_{2}$ | = | $- c z_{3} \,\mathbf{\hat{z}}$ | (4e) | Ho I |
$\mathbf{B_{7}}$ | = | $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+2 x_{4} \, \mathbf{a}_{3}$ | = | $a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}$ | (8h) | Ge III |
$\mathbf{B_{8}}$ | = | $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- 2 x_{4} \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}$ | (8h) | Ge III |
$\mathbf{B_{9}}$ | = | $x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}$ | = | $- a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}$ | (8h) | Ge III |
$\mathbf{B_{10}}$ | = | $- x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}$ | = | $a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}$ | (8h) | Ge III |
$\mathbf{B_{11}}$ | = | $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+2 x_{5} \, \mathbf{a}_{3}$ | = | $a x_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}$ | (8h) | Ho II |
$\mathbf{B_{12}}$ | = | $- x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}- 2 x_{5} \, \mathbf{a}_{3}$ | = | $- a x_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}$ | (8h) | Ho II |
$\mathbf{B_{13}}$ | = | $x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}$ | = | $- a x_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}$ | (8h) | Ho II |
$\mathbf{B_{14}}$ | = | $- x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}$ | = | $a x_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}$ | (8h) | Ho II |
$\mathbf{B_{15}}$ | = | $x_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ | = | $a x_{6} \,\mathbf{\hat{x}}$ | (8i) | Ge IV |
$\mathbf{B_{16}}$ | = | $- x_{6} \, \mathbf{a}_{2}- x_{6} \, \mathbf{a}_{3}$ | = | $- a x_{6} \,\mathbf{\hat{x}}$ | (8i) | Ge IV |
$\mathbf{B_{17}}$ | = | $x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{3}$ | = | $a x_{6} \,\mathbf{\hat{y}}$ | (8i) | Ge IV |
$\mathbf{B_{18}}$ | = | $- x_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{3}$ | = | $- a x_{6} \,\mathbf{\hat{y}}$ | (8i) | Ge IV |
$\mathbf{B_{19}}$ | = | $\left(x_{7} + z_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} + z_{7}\right) \, \mathbf{a}_{2}+2 x_{7} \, \mathbf{a}_{3}$ | = | $a x_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ | (16m) | Ge V |
$\mathbf{B_{20}}$ | = | $- \left(x_{7} - z_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} - z_{7}\right) \, \mathbf{a}_{2}- 2 x_{7} \, \mathbf{a}_{3}$ | = | $- a x_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ | (16m) | Ge V |
$\mathbf{B_{21}}$ | = | $\left(x_{7} + z_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} - z_{7}\right) \, \mathbf{a}_{2}$ | = | $- a x_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ | (16m) | Ge V |
$\mathbf{B_{22}}$ | = | $- \left(x_{7} - z_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} + z_{7}\right) \, \mathbf{a}_{2}$ | = | $a x_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ | (16m) | Ge V |
$\mathbf{B_{23}}$ | = | $\left(x_{7} - z_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} + z_{7}\right) \, \mathbf{a}_{2}$ | = | $- a x_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ | (16m) | Ge V |
$\mathbf{B_{24}}$ | = | $- \left(x_{7} + z_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} - z_{7}\right) \, \mathbf{a}_{2}$ | = | $a x_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ | (16m) | Ge V |
$\mathbf{B_{25}}$ | = | $\left(x_{7} - z_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} - z_{7}\right) \, \mathbf{a}_{2}+2 x_{7} \, \mathbf{a}_{3}$ | = | $a x_{7} \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ | (16m) | Ge V |
$\mathbf{B_{26}}$ | = | $- \left(x_{7} + z_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} + z_{7}\right) \, \mathbf{a}_{2}- 2 x_{7} \, \mathbf{a}_{3}$ | = | $- a x_{7} \,\mathbf{\hat{x}}- a x_{7} \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ | (16m) | Ge V |
$\mathbf{B_{27}}$ | = | $\left(y_{8} + z_{8}\right) \, \mathbf{a}_{1}+z_{8} \, \mathbf{a}_{2}+y_{8} \, \mathbf{a}_{3}$ | = | $a y_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ | (16n) | Ho III |
$\mathbf{B_{28}}$ | = | $- \left(y_{8} - z_{8}\right) \, \mathbf{a}_{1}+z_{8} \, \mathbf{a}_{2}- y_{8} \, \mathbf{a}_{3}$ | = | $- a y_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ | (16n) | Ho III |
$\mathbf{B_{29}}$ | = | $z_{8} \, \mathbf{a}_{1}- \left(y_{8} - z_{8}\right) \, \mathbf{a}_{2}- y_{8} \, \mathbf{a}_{3}$ | = | $- a y_{8} \,\mathbf{\hat{x}}+c z_{8} \,\mathbf{\hat{z}}$ | (16n) | Ho III |
$\mathbf{B_{30}}$ | = | $z_{8} \, \mathbf{a}_{1}+\left(y_{8} + z_{8}\right) \, \mathbf{a}_{2}+y_{8} \, \mathbf{a}_{3}$ | = | $a y_{8} \,\mathbf{\hat{x}}+c z_{8} \,\mathbf{\hat{z}}$ | (16n) | Ho III |
$\mathbf{B_{31}}$ | = | $\left(y_{8} - z_{8}\right) \, \mathbf{a}_{1}- z_{8} \, \mathbf{a}_{2}+y_{8} \, \mathbf{a}_{3}$ | = | $a y_{8} \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ | (16n) | Ho III |
$\mathbf{B_{32}}$ | = | $- \left(y_{8} + z_{8}\right) \, \mathbf{a}_{1}- z_{8} \, \mathbf{a}_{2}- y_{8} \, \mathbf{a}_{3}$ | = | $- a y_{8} \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ | (16n) | Ho III |
$\mathbf{B_{33}}$ | = | $- z_{8} \, \mathbf{a}_{1}+\left(y_{8} - z_{8}\right) \, \mathbf{a}_{2}+y_{8} \, \mathbf{a}_{3}$ | = | $a y_{8} \,\mathbf{\hat{x}}- c z_{8} \,\mathbf{\hat{z}}$ | (16n) | Ho III |
$\mathbf{B_{34}}$ | = | $- z_{8} \, \mathbf{a}_{1}- \left(y_{8} + z_{8}\right) \, \mathbf{a}_{2}- y_{8} \, \mathbf{a}_{3}$ | = | $- a y_{8} \,\mathbf{\hat{x}}- c z_{8} \,\mathbf{\hat{z}}$ | (16n) | Ho III |
$\mathbf{B_{35}}$ | = | $\left(y_{9} + z_{9}\right) \, \mathbf{a}_{1}+z_{9} \, \mathbf{a}_{2}+y_{9} \, \mathbf{a}_{3}$ | = | $a y_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ | (16n) | Ho IV |
$\mathbf{B_{36}}$ | = | $- \left(y_{9} - z_{9}\right) \, \mathbf{a}_{1}+z_{9} \, \mathbf{a}_{2}- y_{9} \, \mathbf{a}_{3}$ | = | $- a y_{9} \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ | (16n) | Ho IV |
$\mathbf{B_{37}}$ | = | $z_{9} \, \mathbf{a}_{1}- \left(y_{9} - z_{9}\right) \, \mathbf{a}_{2}- y_{9} \, \mathbf{a}_{3}$ | = | $- a y_{9} \,\mathbf{\hat{x}}+c z_{9} \,\mathbf{\hat{z}}$ | (16n) | Ho IV |
$\mathbf{B_{38}}$ | = | $z_{9} \, \mathbf{a}_{1}+\left(y_{9} + z_{9}\right) \, \mathbf{a}_{2}+y_{9} \, \mathbf{a}_{3}$ | = | $a y_{9} \,\mathbf{\hat{x}}+c z_{9} \,\mathbf{\hat{z}}$ | (16n) | Ho IV |
$\mathbf{B_{39}}$ | = | $\left(y_{9} - z_{9}\right) \, \mathbf{a}_{1}- z_{9} \, \mathbf{a}_{2}+y_{9} \, \mathbf{a}_{3}$ | = | $a y_{9} \,\mathbf{\hat{y}}- c z_{9} \,\mathbf{\hat{z}}$ | (16n) | Ho IV |
$\mathbf{B_{40}}$ | = | $- \left(y_{9} + z_{9}\right) \, \mathbf{a}_{1}- z_{9} \, \mathbf{a}_{2}- y_{9} \, \mathbf{a}_{3}$ | = | $- a y_{9} \,\mathbf{\hat{y}}- c z_{9} \,\mathbf{\hat{z}}$ | (16n) | Ho IV |
$\mathbf{B_{41}}$ | = | $- z_{9} \, \mathbf{a}_{1}+\left(y_{9} - z_{9}\right) \, \mathbf{a}_{2}+y_{9} \, \mathbf{a}_{3}$ | = | $a y_{9} \,\mathbf{\hat{x}}- c z_{9} \,\mathbf{\hat{z}}$ | (16n) | Ho IV |
$\mathbf{B_{42}}$ | = | $- z_{9} \, \mathbf{a}_{1}- \left(y_{9} + z_{9}\right) \, \mathbf{a}_{2}- y_{9} \, \mathbf{a}_{3}$ | = | $- a y_{9} \,\mathbf{\hat{x}}- c z_{9} \,\mathbf{\hat{z}}$ | (16n) | Ho IV |