Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB3C_oC10_38_a_ae_b-002

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/8STH
or https://aflow.org/p/AB3C_oC10_38_a_ae_b-002
or PDF Version

Orthorhombic BaTiO$_{3}$ Structure: AB3C_oC10_38_a_ae_b-002

Picture of Structure; Click for Big Picture
Prototype BaO$_{3}$Ti
AFLOW prototype label AB3C_oC10_38_a_ae_b-002
ICSD 31155
Pearson symbol oC10
Space group number 38
Space group symbol $Amm2$
AFLOW prototype command aflow --proto=AB3C_oC10_38_a_ae_b-002
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak z_{1}, \allowbreak z_{2}, \allowbreak z_{3}, \allowbreak y_{4}, \allowbreak z_{4}$

  • The perovskite BaTiO$_{3}$ undergoes a variety of temperature driven phase transitions. (Shirane, 1957)
  • The first three structures are ferroelectric:
    • Below 193K the structure is rhombohedral.
    • Between 193K and 278K the structure is orthorhombic. (This structure)
    • Between 278K and 393K the structure is tetragonal. This is the room-temperature form of the material.
    • Above 393K the compound is a cubic perovskite ($E2_{1}$).
  • Hexagonal BaTiO$_{3}$ can be stabilized by alloying the titanium sites with other transition metals. (Dickson, 1961) The pure structure has been grown at 1853K and cooled to room temperature. (Akimo, 1994)
  • The data for this structure was taken 263K.
  • Space group $Amm2$ #38 does not specify the origin of the $z$-axis. We set it by taking $z_{1} = 0$, putting the barium atom at the origin.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&\frac{1}{2}b \,\mathbf{\hat{y}}- \frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}b \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $- z_{1} \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ = $c z_{1} \,\mathbf{\hat{z}}$ (2a) Ba I
$\mathbf{B_{2}}$ = $- z_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $c z_{2} \,\mathbf{\hat{z}}$ (2a) O I
$\mathbf{B_{3}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- z_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+c z_{3} \,\mathbf{\hat{z}}$ (2b) Ti I
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\left(y_{4} - z_{4}\right) \, \mathbf{a}_{2}+\left(y_{4} + z_{4}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (4e) O II
$\mathbf{B_{5}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- \left(y_{4} + z_{4}\right) \, \mathbf{a}_{2}- \left(y_{4} - z_{4}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- b y_{4} \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (4e) O II

References

  • G. Shirane, H. Danner, and R. Pepinsky, Neutron Diffraction Study of Orthorhombic BaTiO$_{3}$, Phys. Rev. 105, 856–860 (1957), doi:10.1103/PhysRev.105.856.
  • J. G. Dickson, L. Katz, and R. Ward, Compounds with the Hexagonal Barium Titanate Structure, J. Am. Chem. Soc. 83, 3026–3029 (1961), doi:10.1021/ja01475a012.
  • A. W. Hewat, Structure of rhombohedral ferroelectric barium titanate, Ferroelectrics 6, 215–218 (1974), doi:10.1080/00150197408243970.
  • J. Akimoto, Y. Gotoh, and Y. Oosawa, Refinement of Hexagonal BaTiO$_{3}$, Acta Crystallogr. Sect. C 50, 160–161 (1994), doi:10.1107/S0108270193008637.

Found in

  • R. T. Downs and M. Hall-Wallace, The American Mineralogist Crystal Structure Database, Am. Mineral. 88, 247–250 (2003).

Prototype Generator

aflow --proto=AB3C_oC10_38_a_ae_b --params=$a,b/a,c/a,z_{1},z_{2},z_{3},y_{4},z_{4}$

Species:

Running:

Output: