Orthorhombic BaTiO_{3} Structure:
 AB3C_oC10_38_a_ae_b-002

Cite this page as: H. Eckert, S. Divilov, A. Zettel, M. J. Mehl, D. Hicks, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. In preparation.

Prototype

AFLOW prototype label
ICSD
Pearson symbol
Space group number
Space group symbol
AFLOW prototype command
$\mathrm{BaO}_{3} \mathrm{Ti}$
AB3C_oC10_38_a_ae_b-002
31155
oC10
38
Amm2
aflow --proto=AB3C_oC10_38_a_ae_b-002
--params $=a, b / a, c / a, z_{1}, z_{2}, z_{3}, y_{4}, z_{4}$

- The perovskite BaTiO_{3} undergoes a variety of temperature driven phase transitions. (Shirane, 1957)
- The first three structures are ferroelectric:
- Below 193K the structure is rhombohedral,
- Between 193K and 278K the structure is orthorhombic. (This structure)
- Between 278 K and 393 K the structure is tetragonal. This is the room-temperature form of the material.
- Above 393 K the compound is a cubic perovskite $\left(E 2_{1}\right)$.
- Hexagonal BaTiO_{3} can be stabilized by alloying the titanium sites with other transition metals. (Dickson, 1961) The pure structure has been grown at 1853 K and cooled to room temperature. (Akimo, 1994)
- The data for this structure was taken 263K.
- Space group $A m m 2 \# 38$ does not specify the origin of the z-axis. We set it by taking $z_{1}=0$, putting the barium atom at the origin.

Base-centered Orthorhombic primitive vectors

$$
\begin{aligned}
& \mathbf{a}_{1}= \\
& \mathbf{a}_{2}= \\
& \frac{1}{2} b \hat{\mathbf{y}}-\frac{1}{2} c \hat{\mathbf{z}} \\
& \mathbf{a}_{3}=\frac{1}{2} b \hat{\mathbf{y}}+\frac{1}{2} c \hat{\mathbf{z}}
\end{aligned}
$$

Basis vectors

$\left.\begin{array}{lccccc} & \begin{array}{c}\text { Lattice } \\ \text { coordinates }\end{array} & \begin{array}{c}\text { Cartesian } \\ \text { coordinates }\end{array} & \begin{array}{c}\text { Wyckoff } \\ \text { position }\end{array} & \begin{array}{c}\text { Atom } \\ \text { type }\end{array} \\ \mathbf{B}_{\mathbf{1}} & = & -z_{1} \mathbf{a}_{2}+z_{1} \mathbf{a}_{3} & = & c z_{1} \hat{\mathbf{z}} & (2 \mathrm{a})\end{array}\right]$ Ba I

References

[1] G. Shirane, H. Danner, and R. Pepinsky, Neutron Diffraction Study of Orthorhombic BaTiO ${ }_{3}$, Phys. Rev. 105, 856-860 (1957), doi:10.1103/PhysRev.105.856
[2] J. G. Dickson, L. Katz, and R. Ward, Compounds with the Hexagonal Barium Titanate Structure, J. Am. Chem. Soc. 83, 3026-3029 (1961), doi 10.1021/ja01475a012.
[3] A. W. Hewat, Structure of rhombohedral ferroelectric barium titanate, Ferroelectrics 6, 215-218 (1974), doi $10.1080 / 00150197408243970$.
[4] J. Akimoto, Y. Gotoh, and Y. Oosawa, Refinement of Hexagonal BaTiO ${ }_{3}$, Acta Crystallogr. Sect. C 50, 160-161 (1994), doi $10.1107 /$ S0108270193008637.

Found in

[1] R. T. Downs and M. Hall-Wallace, The American Mineralogist Crystal Structure Database, Am. Mineral. 88, 247-250 (2003).

