Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB2C2_hP10_194_a_bc_f-001

This structure originally had the label AB2C2_hP10_194_a_bc_f. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/6X9E
or https://aflow.org/p/AB2C2_hP10_194_a_bc_f-001
or PDF Version

Na$_{0.74}$CoO$_{2}$ Structure: AB2C2_hP10_194_a_bc_f-001

Picture of Structure; Click for Big Picture
Prototype CoNa$_{0.74}$O$_{2}$
AFLOW prototype label AB2C2_hP10_194_a_bc_f-001
ICSD 50301
Pearson symbol hP10
Space group number 194
Space group symbol $P6_3/mmc$
AFLOW prototype command aflow --proto=AB2C2_hP10_194_a_bc_f-001
--params=$a, \allowbreak c/a, \allowbreak z_{4}$

  • Na$_{0.74}$CoO$_{2}$ is a high figure-of-merit thermoelectric (Sk, 2019). The sodium sites are only partial filled, with the Na-I (2b) site having 21% occupancy while the Na-II (2c) site is at 51%.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (2a) Co I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}c \,\mathbf{\hat{z}}$ (2a) Co I
$\mathbf{B_{3}}$ = $\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}c \,\mathbf{\hat{z}}$ (2b) Na I
$\mathbf{B_{4}}$ = $\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}c \,\mathbf{\hat{z}}$ (2b) Na I
$\mathbf{B_{5}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (2c) Na II
$\mathbf{B_{6}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ (2c) Na II
$\mathbf{B_{7}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (4f) O I
$\mathbf{B_{8}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4f) O I
$\mathbf{B_{9}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (4f) O I
$\mathbf{B_{10}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c \left(z_{4} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (4f) O I

References

  • R. J. Balsys and R. L. Davis, Refinement of the structure of Na$_{0.74}$CoO$_{2}$ using neutron powder diffraction, Solid State Ion. 93, 279–282 (1996), doi:10.1016/S0167-2738(96)00557-7.

Found in

  • S. Sk, J. Pati, R. S. Dhaka, and S. K. Pandey, Exploring the possibility of enhancing the high figure-of-merit ( $> 2$) of Na$_{0.74}$CoO$_{2}$: A combined experimental and theoretical study, Eur. Phys. J. B 93, 155 (2020), doi:10.1140/epjb/e2020-10227-x.

Prototype Generator

aflow --proto=AB2C2_hP10_194_a_bc_f --params=$a,c/a,z_{4}$

Species:

Running:

Output: