Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A30B30C8D8E_mP308_14_30e_30e_8e_8e_e-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/6QN7
or https://aflow.org/p/A30B30C8D8E_mP308_14_30e_30e_8e_8e_e-001
or PDF Version

[Zn$_{2}$(Benzoato)$_{4}$(Caffeine)$_{2}$]$\cdot$2 -- Caffeine (C$_{30}$H$_{30}$N$_{8}$O$_{8}$Zn) Structure: A30B30C8D8E_mP308_14_30e_30e_8e_8e_e-001

Picture of Structure; Click for Big Picture
Prototype C$_{30}$H$_{30}$N$_{8}$O$_{8}$Zn
AFLOW prototype label A30B30C8D8E_mP308_14_30e_30e_8e_8e_e-001
CCDC 687128
Pearson symbol mP308
Space group number 14
Space group symbol $P2_1/c$
AFLOW prototype command aflow --proto=A30B30C8D8E_mP308_14_30e_30e_8e_8e_e-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak \beta, \allowbreak x_{1}, \allowbreak y_{1}, \allowbreak z_{1}, \allowbreak x_{2}, \allowbreak y_{2}, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak y_{3}, \allowbreak z_{3}, \allowbreak x_{4}, \allowbreak y_{4}, \allowbreak z_{4}, \allowbreak x_{5}, \allowbreak y_{5}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak y_{6}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak y_{7}, \allowbreak z_{7}, \allowbreak x_{8}, \allowbreak y_{8}, \allowbreak z_{8}, \allowbreak x_{9}, \allowbreak y_{9}, \allowbreak z_{9}, \allowbreak x_{10}, \allowbreak y_{10}, \allowbreak z_{10}, \allowbreak x_{11}, \allowbreak y_{11}, \allowbreak z_{11}, \allowbreak x_{12}, \allowbreak y_{12}, \allowbreak z_{12}, \allowbreak x_{13}, \allowbreak y_{13}, \allowbreak z_{13}, \allowbreak x_{14}, \allowbreak y_{14}, \allowbreak z_{14}, \allowbreak x_{15}, \allowbreak y_{15}, \allowbreak z_{15}, \allowbreak x_{16}, \allowbreak y_{16}, \allowbreak z_{16}, \allowbreak x_{17}, \allowbreak y_{17}, \allowbreak z_{17}, \allowbreak x_{18}, \allowbreak y_{18}, \allowbreak z_{18}, \allowbreak x_{19}, \allowbreak y_{19}, \allowbreak z_{19}, \allowbreak x_{20}, \allowbreak y_{20}, \allowbreak z_{20}, \allowbreak x_{21}, \allowbreak y_{21}, \allowbreak z_{21}, \allowbreak x_{22}, \allowbreak y_{22}, \allowbreak z_{22}, \allowbreak x_{23}, \allowbreak y_{23}, \allowbreak z_{23}, \allowbreak x_{24}, \allowbreak y_{24}, \allowbreak z_{24}, \allowbreak x_{25}, \allowbreak y_{25}, \allowbreak z_{25}, \allowbreak x_{26}, \allowbreak y_{26}, \allowbreak z_{26}, \allowbreak x_{27}, \allowbreak y_{27}, \allowbreak z_{27}, \allowbreak x_{28}, \allowbreak y_{28}, \allowbreak z_{28}, \allowbreak x_{29}, \allowbreak y_{29}, \allowbreak z_{29}, \allowbreak x_{30}, \allowbreak y_{30}, \allowbreak z_{30}, \allowbreak x_{31}, \allowbreak y_{31}, \allowbreak z_{31}, \allowbreak x_{32}, \allowbreak y_{32}, \allowbreak z_{32}, \allowbreak x_{33}, \allowbreak y_{33}, \allowbreak z_{33}, \allowbreak x_{34}, \allowbreak y_{34}, \allowbreak z_{34}, \allowbreak x_{35}, \allowbreak y_{35}, \allowbreak z_{35}, \allowbreak x_{36}, \allowbreak y_{36}, \allowbreak z_{36}, \allowbreak x_{37}, \allowbreak y_{37}, \allowbreak z_{37}, \allowbreak x_{38}, \allowbreak y_{38}, \allowbreak z_{38}, \allowbreak x_{39}, \allowbreak y_{39}, \allowbreak z_{39}, \allowbreak x_{40}, \allowbreak y_{40}, \allowbreak z_{40}, \allowbreak x_{41}, \allowbreak y_{41}, \allowbreak z_{41}, \allowbreak x_{42}, \allowbreak y_{42}, \allowbreak z_{42}, \allowbreak x_{43}, \allowbreak y_{43}, \allowbreak z_{43}, \allowbreak x_{44}, \allowbreak y_{44}, \allowbreak z_{44}, \allowbreak x_{45}, \allowbreak y_{45}, \allowbreak z_{45}, \allowbreak x_{46}, \allowbreak y_{46}, \allowbreak z_{46}, \allowbreak x_{47}, \allowbreak y_{47}, \allowbreak z_{47}, \allowbreak x_{48}, \allowbreak y_{48}, \allowbreak z_{48}, \allowbreak x_{49}, \allowbreak y_{49}, \allowbreak z_{49}, \allowbreak x_{50}, \allowbreak y_{50}, \allowbreak z_{50}, \allowbreak x_{51}, \allowbreak y_{51}, \allowbreak z_{51}, \allowbreak x_{52}, \allowbreak y_{52}, \allowbreak z_{52}, \allowbreak x_{53}, \allowbreak y_{53}, \allowbreak z_{53}, \allowbreak x_{54}, \allowbreak y_{54}, \allowbreak z_{54}, \allowbreak x_{55}, \allowbreak y_{55}, \allowbreak z_{55}, \allowbreak x_{56}, \allowbreak y_{56}, \allowbreak z_{56}, \allowbreak x_{57}, \allowbreak y_{57}, \allowbreak z_{57}, \allowbreak x_{58}, \allowbreak y_{58}, \allowbreak z_{58}, \allowbreak x_{59}, \allowbreak y_{59}, \allowbreak z_{59}, \allowbreak x_{60}, \allowbreak y_{60}, \allowbreak z_{60}, \allowbreak x_{61}, \allowbreak y_{61}, \allowbreak z_{61}, \allowbreak x_{62}, \allowbreak y_{62}, \allowbreak z_{62}, \allowbreak x_{63}, \allowbreak y_{63}, \allowbreak z_{63}, \allowbreak x_{64}, \allowbreak y_{64}, \allowbreak z_{64}, \allowbreak x_{65}, \allowbreak y_{65}, \allowbreak z_{65}, \allowbreak x_{66}, \allowbreak y_{66}, \allowbreak z_{66}, \allowbreak x_{67}, \allowbreak y_{67}, \allowbreak z_{67}, \allowbreak x_{68}, \allowbreak y_{68}, \allowbreak z_{68}, \allowbreak x_{69}, \allowbreak y_{69}, \allowbreak z_{69}, \allowbreak x_{70}, \allowbreak y_{70}, \allowbreak z_{70}, \allowbreak x_{71}, \allowbreak y_{71}, \allowbreak z_{71}, \allowbreak x_{72}, \allowbreak y_{72}, \allowbreak z_{72}, \allowbreak x_{73}, \allowbreak y_{73}, \allowbreak z_{73}, \allowbreak x_{74}, \allowbreak y_{74}, \allowbreak z_{74}, \allowbreak x_{75}, \allowbreak y_{75}, \allowbreak z_{75}, \allowbreak x_{76}, \allowbreak y_{76}, \allowbreak z_{76}, \allowbreak x_{77}, \allowbreak y_{77}, \allowbreak z_{77}$

  • (Findoráková, 2010) present this structure in the $P2_{1}/n$ setting of space group #14. We used FINDSYM to change this to the standard $P2_{1}/c$ setting.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&b \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \cos{\beta} \,\mathbf{\hat{x}}+c \sin{\beta} \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $x_{1} \, \mathbf{a}_{1}+y_{1} \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ = $\left(a x_{1} + c z_{1} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{1} \,\mathbf{\hat{y}}+c z_{1} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C I
$\mathbf{B_{2}}$ = $- x_{1} \, \mathbf{a}_{1}+\left(y_{1} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{1} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{1} + c \left(z_{1} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{1} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{1} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C I
$\mathbf{B_{3}}$ = $- x_{1} \, \mathbf{a}_{1}- y_{1} \, \mathbf{a}_{2}- z_{1} \, \mathbf{a}_{3}$ = $- \left(a x_{1} + c z_{1} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{1} \,\mathbf{\hat{y}}- c z_{1} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C I
$\mathbf{B_{4}}$ = $x_{1} \, \mathbf{a}_{1}- \left(y_{1} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{1} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{1} + c \left(z_{1} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{1} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{1} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C I
$\mathbf{B_{5}}$ = $x_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ = $\left(a x_{2} + c z_{2} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{2} \,\mathbf{\hat{y}}+c z_{2} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C II
$\mathbf{B_{6}}$ = $- x_{2} \, \mathbf{a}_{1}+\left(y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{2} + c \left(z_{2} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{2} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C II
$\mathbf{B_{7}}$ = $- x_{2} \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ = $- \left(a x_{2} + c z_{2} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{2} \,\mathbf{\hat{y}}- c z_{2} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C II
$\mathbf{B_{8}}$ = $x_{2} \, \mathbf{a}_{1}- \left(y_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{2} + c \left(z_{2} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{2} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C II
$\mathbf{B_{9}}$ = $x_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ = $\left(a x_{3} + c z_{3} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{3} \,\mathbf{\hat{y}}+c z_{3} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C III
$\mathbf{B_{10}}$ = $- x_{3} \, \mathbf{a}_{1}+\left(y_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{3} + c \left(z_{3} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{3} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C III
$\mathbf{B_{11}}$ = $- x_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ = $- \left(a x_{3} + c z_{3} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{3} \,\mathbf{\hat{y}}- c z_{3} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C III
$\mathbf{B_{12}}$ = $x_{3} \, \mathbf{a}_{1}- \left(y_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{3} + c \left(z_{3} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{3} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C III
$\mathbf{B_{13}}$ = $x_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\left(a x_{4} + c z_{4} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}+c z_{4} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C IV
$\mathbf{B_{14}}$ = $- x_{4} \, \mathbf{a}_{1}+\left(y_{4} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{4} + c \left(z_{4} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{4} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{4} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C IV
$\mathbf{B_{15}}$ = $- x_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $- \left(a x_{4} + c z_{4} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{4} \,\mathbf{\hat{y}}- c z_{4} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C IV
$\mathbf{B_{16}}$ = $x_{4} \, \mathbf{a}_{1}- \left(y_{4} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{4} + c \left(z_{4} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{4} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{4} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C IV
$\mathbf{B_{17}}$ = $x_{5} \, \mathbf{a}_{1}+y_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $\left(a x_{5} + c z_{5} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{5} \,\mathbf{\hat{y}}+c z_{5} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C V
$\mathbf{B_{18}}$ = $- x_{5} \, \mathbf{a}_{1}+\left(y_{5} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{5} + c \left(z_{5} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{5} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{5} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C V
$\mathbf{B_{19}}$ = $- x_{5} \, \mathbf{a}_{1}- y_{5} \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $- \left(a x_{5} + c z_{5} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{5} \,\mathbf{\hat{y}}- c z_{5} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C V
$\mathbf{B_{20}}$ = $x_{5} \, \mathbf{a}_{1}- \left(y_{5} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{5} + c \left(z_{5} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{5} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C V
$\mathbf{B_{21}}$ = $x_{6} \, \mathbf{a}_{1}+y_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $\left(a x_{6} + c z_{6} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{6} \,\mathbf{\hat{y}}+c z_{6} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C VI
$\mathbf{B_{22}}$ = $- x_{6} \, \mathbf{a}_{1}+\left(y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{6} + c \left(z_{6} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{6} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C VI
$\mathbf{B_{23}}$ = $- x_{6} \, \mathbf{a}_{1}- y_{6} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $- \left(a x_{6} + c z_{6} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{6} \,\mathbf{\hat{y}}- c z_{6} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C VI
$\mathbf{B_{24}}$ = $x_{6} \, \mathbf{a}_{1}- \left(y_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{6} + c \left(z_{6} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C VI
$\mathbf{B_{25}}$ = $x_{7} \, \mathbf{a}_{1}+y_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $\left(a x_{7} + c z_{7} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{7} \,\mathbf{\hat{y}}+c z_{7} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C VII
$\mathbf{B_{26}}$ = $- x_{7} \, \mathbf{a}_{1}+\left(y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{7} + c \left(z_{7} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{7} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{7} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C VII
$\mathbf{B_{27}}$ = $- x_{7} \, \mathbf{a}_{1}- y_{7} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $- \left(a x_{7} + c z_{7} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{7} \,\mathbf{\hat{y}}- c z_{7} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C VII
$\mathbf{B_{28}}$ = $x_{7} \, \mathbf{a}_{1}- \left(y_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{7} + c \left(z_{7} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C VII
$\mathbf{B_{29}}$ = $x_{8} \, \mathbf{a}_{1}+y_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $\left(a x_{8} + c z_{8} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{8} \,\mathbf{\hat{y}}+c z_{8} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C VIII
$\mathbf{B_{30}}$ = $- x_{8} \, \mathbf{a}_{1}+\left(y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{8} + c \left(z_{8} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{8} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{8} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C VIII
$\mathbf{B_{31}}$ = $- x_{8} \, \mathbf{a}_{1}- y_{8} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ = $- \left(a x_{8} + c z_{8} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{8} \,\mathbf{\hat{y}}- c z_{8} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C VIII
$\mathbf{B_{32}}$ = $x_{8} \, \mathbf{a}_{1}- \left(y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{8} + c \left(z_{8} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{8} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C VIII
$\mathbf{B_{33}}$ = $x_{9} \, \mathbf{a}_{1}+y_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $\left(a x_{9} + c z_{9} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{9} \,\mathbf{\hat{y}}+c z_{9} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C IX
$\mathbf{B_{34}}$ = $- x_{9} \, \mathbf{a}_{1}+\left(y_{9} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{9} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{9} + c \left(z_{9} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{9} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{9} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C IX
$\mathbf{B_{35}}$ = $- x_{9} \, \mathbf{a}_{1}- y_{9} \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ = $- \left(a x_{9} + c z_{9} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{9} \,\mathbf{\hat{y}}- c z_{9} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C IX
$\mathbf{B_{36}}$ = $x_{9} \, \mathbf{a}_{1}- \left(y_{9} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{9} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{9} + c \left(z_{9} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{9} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{9} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C IX
$\mathbf{B_{37}}$ = $x_{10} \, \mathbf{a}_{1}+y_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $\left(a x_{10} + c z_{10} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{10} \,\mathbf{\hat{y}}+c z_{10} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C X
$\mathbf{B_{38}}$ = $- x_{10} \, \mathbf{a}_{1}+\left(y_{10} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{10} + c \left(z_{10} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{10} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{10} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C X
$\mathbf{B_{39}}$ = $- x_{10} \, \mathbf{a}_{1}- y_{10} \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ = $- \left(a x_{10} + c z_{10} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{10} \,\mathbf{\hat{y}}- c z_{10} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C X
$\mathbf{B_{40}}$ = $x_{10} \, \mathbf{a}_{1}- \left(y_{10} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{10} + c \left(z_{10} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{10} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{10} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C X
$\mathbf{B_{41}}$ = $x_{11} \, \mathbf{a}_{1}+y_{11} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $\left(a x_{11} + c z_{11} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{11} \,\mathbf{\hat{y}}+c z_{11} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XI
$\mathbf{B_{42}}$ = $- x_{11} \, \mathbf{a}_{1}+\left(y_{11} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{11} + c \left(z_{11} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{11} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{11} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XI
$\mathbf{B_{43}}$ = $- x_{11} \, \mathbf{a}_{1}- y_{11} \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ = $- \left(a x_{11} + c z_{11} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{11} \,\mathbf{\hat{y}}- c z_{11} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XI
$\mathbf{B_{44}}$ = $x_{11} \, \mathbf{a}_{1}- \left(y_{11} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{11} + c \left(z_{11} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{11} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{11} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XI
$\mathbf{B_{45}}$ = $x_{12} \, \mathbf{a}_{1}+y_{12} \, \mathbf{a}_{2}+z_{12} \, \mathbf{a}_{3}$ = $\left(a x_{12} + c z_{12} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{12} \,\mathbf{\hat{y}}+c z_{12} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XII
$\mathbf{B_{46}}$ = $- x_{12} \, \mathbf{a}_{1}+\left(y_{12} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{12} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{12} + c \left(z_{12} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{12} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{12} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XII
$\mathbf{B_{47}}$ = $- x_{12} \, \mathbf{a}_{1}- y_{12} \, \mathbf{a}_{2}- z_{12} \, \mathbf{a}_{3}$ = $- \left(a x_{12} + c z_{12} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{12} \,\mathbf{\hat{y}}- c z_{12} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XII
$\mathbf{B_{48}}$ = $x_{12} \, \mathbf{a}_{1}- \left(y_{12} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{12} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{12} + c \left(z_{12} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{12} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{12} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XII
$\mathbf{B_{49}}$ = $x_{13} \, \mathbf{a}_{1}+y_{13} \, \mathbf{a}_{2}+z_{13} \, \mathbf{a}_{3}$ = $\left(a x_{13} + c z_{13} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{13} \,\mathbf{\hat{y}}+c z_{13} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XIII
$\mathbf{B_{50}}$ = $- x_{13} \, \mathbf{a}_{1}+\left(y_{13} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{13} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{13} + c \left(z_{13} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{13} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{13} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XIII
$\mathbf{B_{51}}$ = $- x_{13} \, \mathbf{a}_{1}- y_{13} \, \mathbf{a}_{2}- z_{13} \, \mathbf{a}_{3}$ = $- \left(a x_{13} + c z_{13} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{13} \,\mathbf{\hat{y}}- c z_{13} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XIII
$\mathbf{B_{52}}$ = $x_{13} \, \mathbf{a}_{1}- \left(y_{13} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{13} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{13} + c \left(z_{13} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{13} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{13} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XIII
$\mathbf{B_{53}}$ = $x_{14} \, \mathbf{a}_{1}+y_{14} \, \mathbf{a}_{2}+z_{14} \, \mathbf{a}_{3}$ = $\left(a x_{14} + c z_{14} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{14} \,\mathbf{\hat{y}}+c z_{14} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XIV
$\mathbf{B_{54}}$ = $- x_{14} \, \mathbf{a}_{1}+\left(y_{14} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{14} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{14} + c \left(z_{14} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{14} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{14} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XIV
$\mathbf{B_{55}}$ = $- x_{14} \, \mathbf{a}_{1}- y_{14} \, \mathbf{a}_{2}- z_{14} \, \mathbf{a}_{3}$ = $- \left(a x_{14} + c z_{14} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{14} \,\mathbf{\hat{y}}- c z_{14} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XIV
$\mathbf{B_{56}}$ = $x_{14} \, \mathbf{a}_{1}- \left(y_{14} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{14} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{14} + c \left(z_{14} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{14} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{14} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XIV
$\mathbf{B_{57}}$ = $x_{15} \, \mathbf{a}_{1}+y_{15} \, \mathbf{a}_{2}+z_{15} \, \mathbf{a}_{3}$ = $\left(a x_{15} + c z_{15} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{15} \,\mathbf{\hat{y}}+c z_{15} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XV
$\mathbf{B_{58}}$ = $- x_{15} \, \mathbf{a}_{1}+\left(y_{15} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{15} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{15} + c \left(z_{15} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{15} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{15} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XV
$\mathbf{B_{59}}$ = $- x_{15} \, \mathbf{a}_{1}- y_{15} \, \mathbf{a}_{2}- z_{15} \, \mathbf{a}_{3}$ = $- \left(a x_{15} + c z_{15} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{15} \,\mathbf{\hat{y}}- c z_{15} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XV
$\mathbf{B_{60}}$ = $x_{15} \, \mathbf{a}_{1}- \left(y_{15} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{15} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{15} + c \left(z_{15} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{15} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{15} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XV
$\mathbf{B_{61}}$ = $x_{16} \, \mathbf{a}_{1}+y_{16} \, \mathbf{a}_{2}+z_{16} \, \mathbf{a}_{3}$ = $\left(a x_{16} + c z_{16} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{16} \,\mathbf{\hat{y}}+c z_{16} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XVI
$\mathbf{B_{62}}$ = $- x_{16} \, \mathbf{a}_{1}+\left(y_{16} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{16} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{16} + c \left(z_{16} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{16} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{16} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XVI
$\mathbf{B_{63}}$ = $- x_{16} \, \mathbf{a}_{1}- y_{16} \, \mathbf{a}_{2}- z_{16} \, \mathbf{a}_{3}$ = $- \left(a x_{16} + c z_{16} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{16} \,\mathbf{\hat{y}}- c z_{16} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XVI
$\mathbf{B_{64}}$ = $x_{16} \, \mathbf{a}_{1}- \left(y_{16} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{16} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{16} + c \left(z_{16} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{16} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{16} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XVI
$\mathbf{B_{65}}$ = $x_{17} \, \mathbf{a}_{1}+y_{17} \, \mathbf{a}_{2}+z_{17} \, \mathbf{a}_{3}$ = $\left(a x_{17} + c z_{17} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{17} \,\mathbf{\hat{y}}+c z_{17} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XVII
$\mathbf{B_{66}}$ = $- x_{17} \, \mathbf{a}_{1}+\left(y_{17} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{17} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{17} + c \left(z_{17} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{17} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{17} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XVII
$\mathbf{B_{67}}$ = $- x_{17} \, \mathbf{a}_{1}- y_{17} \, \mathbf{a}_{2}- z_{17} \, \mathbf{a}_{3}$ = $- \left(a x_{17} + c z_{17} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{17} \,\mathbf{\hat{y}}- c z_{17} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XVII
$\mathbf{B_{68}}$ = $x_{17} \, \mathbf{a}_{1}- \left(y_{17} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{17} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{17} + c \left(z_{17} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{17} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{17} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XVII
$\mathbf{B_{69}}$ = $x_{18} \, \mathbf{a}_{1}+y_{18} \, \mathbf{a}_{2}+z_{18} \, \mathbf{a}_{3}$ = $\left(a x_{18} + c z_{18} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{18} \,\mathbf{\hat{y}}+c z_{18} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XVIII
$\mathbf{B_{70}}$ = $- x_{18} \, \mathbf{a}_{1}+\left(y_{18} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{18} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{18} + c \left(z_{18} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{18} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{18} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XVIII
$\mathbf{B_{71}}$ = $- x_{18} \, \mathbf{a}_{1}- y_{18} \, \mathbf{a}_{2}- z_{18} \, \mathbf{a}_{3}$ = $- \left(a x_{18} + c z_{18} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{18} \,\mathbf{\hat{y}}- c z_{18} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XVIII
$\mathbf{B_{72}}$ = $x_{18} \, \mathbf{a}_{1}- \left(y_{18} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{18} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{18} + c \left(z_{18} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{18} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{18} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XVIII
$\mathbf{B_{73}}$ = $x_{19} \, \mathbf{a}_{1}+y_{19} \, \mathbf{a}_{2}+z_{19} \, \mathbf{a}_{3}$ = $\left(a x_{19} + c z_{19} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{19} \,\mathbf{\hat{y}}+c z_{19} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XIX
$\mathbf{B_{74}}$ = $- x_{19} \, \mathbf{a}_{1}+\left(y_{19} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{19} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{19} + c \left(z_{19} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{19} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{19} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XIX
$\mathbf{B_{75}}$ = $- x_{19} \, \mathbf{a}_{1}- y_{19} \, \mathbf{a}_{2}- z_{19} \, \mathbf{a}_{3}$ = $- \left(a x_{19} + c z_{19} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{19} \,\mathbf{\hat{y}}- c z_{19} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XIX
$\mathbf{B_{76}}$ = $x_{19} \, \mathbf{a}_{1}- \left(y_{19} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{19} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{19} + c \left(z_{19} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{19} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{19} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XIX
$\mathbf{B_{77}}$ = $x_{20} \, \mathbf{a}_{1}+y_{20} \, \mathbf{a}_{2}+z_{20} \, \mathbf{a}_{3}$ = $\left(a x_{20} + c z_{20} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{20} \,\mathbf{\hat{y}}+c z_{20} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XX
$\mathbf{B_{78}}$ = $- x_{20} \, \mathbf{a}_{1}+\left(y_{20} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{20} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{20} + c \left(z_{20} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{20} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{20} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XX
$\mathbf{B_{79}}$ = $- x_{20} \, \mathbf{a}_{1}- y_{20} \, \mathbf{a}_{2}- z_{20} \, \mathbf{a}_{3}$ = $- \left(a x_{20} + c z_{20} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{20} \,\mathbf{\hat{y}}- c z_{20} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XX
$\mathbf{B_{80}}$ = $x_{20} \, \mathbf{a}_{1}- \left(y_{20} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{20} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{20} + c \left(z_{20} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{20} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{20} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XX
$\mathbf{B_{81}}$ = $x_{21} \, \mathbf{a}_{1}+y_{21} \, \mathbf{a}_{2}+z_{21} \, \mathbf{a}_{3}$ = $\left(a x_{21} + c z_{21} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{21} \,\mathbf{\hat{y}}+c z_{21} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XXI
$\mathbf{B_{82}}$ = $- x_{21} \, \mathbf{a}_{1}+\left(y_{21} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{21} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{21} + c \left(z_{21} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{21} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{21} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XXI
$\mathbf{B_{83}}$ = $- x_{21} \, \mathbf{a}_{1}- y_{21} \, \mathbf{a}_{2}- z_{21} \, \mathbf{a}_{3}$ = $- \left(a x_{21} + c z_{21} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{21} \,\mathbf{\hat{y}}- c z_{21} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XXI
$\mathbf{B_{84}}$ = $x_{21} \, \mathbf{a}_{1}- \left(y_{21} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{21} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{21} + c \left(z_{21} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{21} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{21} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XXI
$\mathbf{B_{85}}$ = $x_{22} \, \mathbf{a}_{1}+y_{22} \, \mathbf{a}_{2}+z_{22} \, \mathbf{a}_{3}$ = $\left(a x_{22} + c z_{22} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{22} \,\mathbf{\hat{y}}+c z_{22} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XXII
$\mathbf{B_{86}}$ = $- x_{22} \, \mathbf{a}_{1}+\left(y_{22} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{22} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{22} + c \left(z_{22} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{22} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{22} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XXII
$\mathbf{B_{87}}$ = $- x_{22} \, \mathbf{a}_{1}- y_{22} \, \mathbf{a}_{2}- z_{22} \, \mathbf{a}_{3}$ = $- \left(a x_{22} + c z_{22} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{22} \,\mathbf{\hat{y}}- c z_{22} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XXII
$\mathbf{B_{88}}$ = $x_{22} \, \mathbf{a}_{1}- \left(y_{22} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{22} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{22} + c \left(z_{22} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{22} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{22} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XXII
$\mathbf{B_{89}}$ = $x_{23} \, \mathbf{a}_{1}+y_{23} \, \mathbf{a}_{2}+z_{23} \, \mathbf{a}_{3}$ = $\left(a x_{23} + c z_{23} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{23} \,\mathbf{\hat{y}}+c z_{23} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XXIII
$\mathbf{B_{90}}$ = $- x_{23} \, \mathbf{a}_{1}+\left(y_{23} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{23} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{23} + c \left(z_{23} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{23} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{23} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XXIII
$\mathbf{B_{91}}$ = $- x_{23} \, \mathbf{a}_{1}- y_{23} \, \mathbf{a}_{2}- z_{23} \, \mathbf{a}_{3}$ = $- \left(a x_{23} + c z_{23} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{23} \,\mathbf{\hat{y}}- c z_{23} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XXIII
$\mathbf{B_{92}}$ = $x_{23} \, \mathbf{a}_{1}- \left(y_{23} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{23} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{23} + c \left(z_{23} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{23} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{23} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XXIII
$\mathbf{B_{93}}$ = $x_{24} \, \mathbf{a}_{1}+y_{24} \, \mathbf{a}_{2}+z_{24} \, \mathbf{a}_{3}$ = $\left(a x_{24} + c z_{24} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{24} \,\mathbf{\hat{y}}+c z_{24} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XXIV
$\mathbf{B_{94}}$ = $- x_{24} \, \mathbf{a}_{1}+\left(y_{24} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{24} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{24} + c \left(z_{24} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{24} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{24} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XXIV
$\mathbf{B_{95}}$ = $- x_{24} \, \mathbf{a}_{1}- y_{24} \, \mathbf{a}_{2}- z_{24} \, \mathbf{a}_{3}$ = $- \left(a x_{24} + c z_{24} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{24} \,\mathbf{\hat{y}}- c z_{24} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XXIV
$\mathbf{B_{96}}$ = $x_{24} \, \mathbf{a}_{1}- \left(y_{24} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{24} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{24} + c \left(z_{24} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{24} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{24} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XXIV
$\mathbf{B_{97}}$ = $x_{25} \, \mathbf{a}_{1}+y_{25} \, \mathbf{a}_{2}+z_{25} \, \mathbf{a}_{3}$ = $\left(a x_{25} + c z_{25} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{25} \,\mathbf{\hat{y}}+c z_{25} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XXV
$\mathbf{B_{98}}$ = $- x_{25} \, \mathbf{a}_{1}+\left(y_{25} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{25} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{25} + c \left(z_{25} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{25} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{25} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XXV
$\mathbf{B_{99}}$ = $- x_{25} \, \mathbf{a}_{1}- y_{25} \, \mathbf{a}_{2}- z_{25} \, \mathbf{a}_{3}$ = $- \left(a x_{25} + c z_{25} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{25} \,\mathbf{\hat{y}}- c z_{25} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XXV
$\mathbf{B_{100}}$ = $x_{25} \, \mathbf{a}_{1}- \left(y_{25} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{25} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{25} + c \left(z_{25} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{25} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{25} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XXV
$\mathbf{B_{101}}$ = $x_{26} \, \mathbf{a}_{1}+y_{26} \, \mathbf{a}_{2}+z_{26} \, \mathbf{a}_{3}$ = $\left(a x_{26} + c z_{26} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{26} \,\mathbf{\hat{y}}+c z_{26} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XXVI
$\mathbf{B_{102}}$ = $- x_{26} \, \mathbf{a}_{1}+\left(y_{26} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{26} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{26} + c \left(z_{26} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{26} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{26} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XXVI
$\mathbf{B_{103}}$ = $- x_{26} \, \mathbf{a}_{1}- y_{26} \, \mathbf{a}_{2}- z_{26} \, \mathbf{a}_{3}$ = $- \left(a x_{26} + c z_{26} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{26} \,\mathbf{\hat{y}}- c z_{26} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XXVI
$\mathbf{B_{104}}$ = $x_{26} \, \mathbf{a}_{1}- \left(y_{26} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{26} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{26} + c \left(z_{26} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{26} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{26} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XXVI
$\mathbf{B_{105}}$ = $x_{27} \, \mathbf{a}_{1}+y_{27} \, \mathbf{a}_{2}+z_{27} \, \mathbf{a}_{3}$ = $\left(a x_{27} + c z_{27} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{27} \,\mathbf{\hat{y}}+c z_{27} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XXVII
$\mathbf{B_{106}}$ = $- x_{27} \, \mathbf{a}_{1}+\left(y_{27} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{27} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{27} + c \left(z_{27} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{27} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{27} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XXVII
$\mathbf{B_{107}}$ = $- x_{27} \, \mathbf{a}_{1}- y_{27} \, \mathbf{a}_{2}- z_{27} \, \mathbf{a}_{3}$ = $- \left(a x_{27} + c z_{27} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{27} \,\mathbf{\hat{y}}- c z_{27} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XXVII
$\mathbf{B_{108}}$ = $x_{27} \, \mathbf{a}_{1}- \left(y_{27} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{27} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{27} + c \left(z_{27} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{27} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{27} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XXVII
$\mathbf{B_{109}}$ = $x_{28} \, \mathbf{a}_{1}+y_{28} \, \mathbf{a}_{2}+z_{28} \, \mathbf{a}_{3}$ = $\left(a x_{28} + c z_{28} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{28} \,\mathbf{\hat{y}}+c z_{28} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XXVIII
$\mathbf{B_{110}}$ = $- x_{28} \, \mathbf{a}_{1}+\left(y_{28} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{28} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{28} + c \left(z_{28} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{28} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{28} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XXVIII
$\mathbf{B_{111}}$ = $- x_{28} \, \mathbf{a}_{1}- y_{28} \, \mathbf{a}_{2}- z_{28} \, \mathbf{a}_{3}$ = $- \left(a x_{28} + c z_{28} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{28} \,\mathbf{\hat{y}}- c z_{28} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XXVIII
$\mathbf{B_{112}}$ = $x_{28} \, \mathbf{a}_{1}- \left(y_{28} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{28} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{28} + c \left(z_{28} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{28} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{28} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XXVIII
$\mathbf{B_{113}}$ = $x_{29} \, \mathbf{a}_{1}+y_{29} \, \mathbf{a}_{2}+z_{29} \, \mathbf{a}_{3}$ = $\left(a x_{29} + c z_{29} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{29} \,\mathbf{\hat{y}}+c z_{29} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XXIX
$\mathbf{B_{114}}$ = $- x_{29} \, \mathbf{a}_{1}+\left(y_{29} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{29} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{29} + c \left(z_{29} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{29} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{29} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XXIX
$\mathbf{B_{115}}$ = $- x_{29} \, \mathbf{a}_{1}- y_{29} \, \mathbf{a}_{2}- z_{29} \, \mathbf{a}_{3}$ = $- \left(a x_{29} + c z_{29} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{29} \,\mathbf{\hat{y}}- c z_{29} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XXIX
$\mathbf{B_{116}}$ = $x_{29} \, \mathbf{a}_{1}- \left(y_{29} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{29} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{29} + c \left(z_{29} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{29} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{29} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XXIX
$\mathbf{B_{117}}$ = $x_{30} \, \mathbf{a}_{1}+y_{30} \, \mathbf{a}_{2}+z_{30} \, \mathbf{a}_{3}$ = $\left(a x_{30} + c z_{30} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{30} \,\mathbf{\hat{y}}+c z_{30} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XXX
$\mathbf{B_{118}}$ = $- x_{30} \, \mathbf{a}_{1}+\left(y_{30} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{30} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{30} + c \left(z_{30} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{30} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{30} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XXX
$\mathbf{B_{119}}$ = $- x_{30} \, \mathbf{a}_{1}- y_{30} \, \mathbf{a}_{2}- z_{30} \, \mathbf{a}_{3}$ = $- \left(a x_{30} + c z_{30} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{30} \,\mathbf{\hat{y}}- c z_{30} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XXX
$\mathbf{B_{120}}$ = $x_{30} \, \mathbf{a}_{1}- \left(y_{30} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{30} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{30} + c \left(z_{30} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{30} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{30} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) C XXX
$\mathbf{B_{121}}$ = $x_{31} \, \mathbf{a}_{1}+y_{31} \, \mathbf{a}_{2}+z_{31} \, \mathbf{a}_{3}$ = $\left(a x_{31} + c z_{31} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{31} \,\mathbf{\hat{y}}+c z_{31} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H I
$\mathbf{B_{122}}$ = $- x_{31} \, \mathbf{a}_{1}+\left(y_{31} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{31} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{31} + c \left(z_{31} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{31} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{31} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H I
$\mathbf{B_{123}}$ = $- x_{31} \, \mathbf{a}_{1}- y_{31} \, \mathbf{a}_{2}- z_{31} \, \mathbf{a}_{3}$ = $- \left(a x_{31} + c z_{31} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{31} \,\mathbf{\hat{y}}- c z_{31} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H I
$\mathbf{B_{124}}$ = $x_{31} \, \mathbf{a}_{1}- \left(y_{31} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{31} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{31} + c \left(z_{31} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{31} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{31} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H I
$\mathbf{B_{125}}$ = $x_{32} \, \mathbf{a}_{1}+y_{32} \, \mathbf{a}_{2}+z_{32} \, \mathbf{a}_{3}$ = $\left(a x_{32} + c z_{32} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{32} \,\mathbf{\hat{y}}+c z_{32} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H II
$\mathbf{B_{126}}$ = $- x_{32} \, \mathbf{a}_{1}+\left(y_{32} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{32} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{32} + c \left(z_{32} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{32} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{32} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H II
$\mathbf{B_{127}}$ = $- x_{32} \, \mathbf{a}_{1}- y_{32} \, \mathbf{a}_{2}- z_{32} \, \mathbf{a}_{3}$ = $- \left(a x_{32} + c z_{32} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{32} \,\mathbf{\hat{y}}- c z_{32} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H II
$\mathbf{B_{128}}$ = $x_{32} \, \mathbf{a}_{1}- \left(y_{32} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{32} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{32} + c \left(z_{32} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{32} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{32} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H II
$\mathbf{B_{129}}$ = $x_{33} \, \mathbf{a}_{1}+y_{33} \, \mathbf{a}_{2}+z_{33} \, \mathbf{a}_{3}$ = $\left(a x_{33} + c z_{33} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{33} \,\mathbf{\hat{y}}+c z_{33} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H III
$\mathbf{B_{130}}$ = $- x_{33} \, \mathbf{a}_{1}+\left(y_{33} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{33} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{33} + c \left(z_{33} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{33} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{33} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H III
$\mathbf{B_{131}}$ = $- x_{33} \, \mathbf{a}_{1}- y_{33} \, \mathbf{a}_{2}- z_{33} \, \mathbf{a}_{3}$ = $- \left(a x_{33} + c z_{33} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{33} \,\mathbf{\hat{y}}- c z_{33} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H III
$\mathbf{B_{132}}$ = $x_{33} \, \mathbf{a}_{1}- \left(y_{33} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{33} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{33} + c \left(z_{33} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{33} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{33} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H III
$\mathbf{B_{133}}$ = $x_{34} \, \mathbf{a}_{1}+y_{34} \, \mathbf{a}_{2}+z_{34} \, \mathbf{a}_{3}$ = $\left(a x_{34} + c z_{34} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{34} \,\mathbf{\hat{y}}+c z_{34} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H IV
$\mathbf{B_{134}}$ = $- x_{34} \, \mathbf{a}_{1}+\left(y_{34} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{34} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{34} + c \left(z_{34} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{34} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{34} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H IV
$\mathbf{B_{135}}$ = $- x_{34} \, \mathbf{a}_{1}- y_{34} \, \mathbf{a}_{2}- z_{34} \, \mathbf{a}_{3}$ = $- \left(a x_{34} + c z_{34} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{34} \,\mathbf{\hat{y}}- c z_{34} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H IV
$\mathbf{B_{136}}$ = $x_{34} \, \mathbf{a}_{1}- \left(y_{34} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{34} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{34} + c \left(z_{34} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{34} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{34} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H IV
$\mathbf{B_{137}}$ = $x_{35} \, \mathbf{a}_{1}+y_{35} \, \mathbf{a}_{2}+z_{35} \, \mathbf{a}_{3}$ = $\left(a x_{35} + c z_{35} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{35} \,\mathbf{\hat{y}}+c z_{35} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H V
$\mathbf{B_{138}}$ = $- x_{35} \, \mathbf{a}_{1}+\left(y_{35} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{35} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{35} + c \left(z_{35} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{35} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{35} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H V
$\mathbf{B_{139}}$ = $- x_{35} \, \mathbf{a}_{1}- y_{35} \, \mathbf{a}_{2}- z_{35} \, \mathbf{a}_{3}$ = $- \left(a x_{35} + c z_{35} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{35} \,\mathbf{\hat{y}}- c z_{35} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H V
$\mathbf{B_{140}}$ = $x_{35} \, \mathbf{a}_{1}- \left(y_{35} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{35} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{35} + c \left(z_{35} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{35} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{35} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H V
$\mathbf{B_{141}}$ = $x_{36} \, \mathbf{a}_{1}+y_{36} \, \mathbf{a}_{2}+z_{36} \, \mathbf{a}_{3}$ = $\left(a x_{36} + c z_{36} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{36} \,\mathbf{\hat{y}}+c z_{36} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H VI
$\mathbf{B_{142}}$ = $- x_{36} \, \mathbf{a}_{1}+\left(y_{36} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{36} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{36} + c \left(z_{36} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{36} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{36} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H VI
$\mathbf{B_{143}}$ = $- x_{36} \, \mathbf{a}_{1}- y_{36} \, \mathbf{a}_{2}- z_{36} \, \mathbf{a}_{3}$ = $- \left(a x_{36} + c z_{36} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{36} \,\mathbf{\hat{y}}- c z_{36} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H VI
$\mathbf{B_{144}}$ = $x_{36} \, \mathbf{a}_{1}- \left(y_{36} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{36} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{36} + c \left(z_{36} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{36} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{36} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H VI
$\mathbf{B_{145}}$ = $x_{37} \, \mathbf{a}_{1}+y_{37} \, \mathbf{a}_{2}+z_{37} \, \mathbf{a}_{3}$ = $\left(a x_{37} + c z_{37} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{37} \,\mathbf{\hat{y}}+c z_{37} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H VII
$\mathbf{B_{146}}$ = $- x_{37} \, \mathbf{a}_{1}+\left(y_{37} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{37} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{37} + c \left(z_{37} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{37} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{37} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H VII
$\mathbf{B_{147}}$ = $- x_{37} \, \mathbf{a}_{1}- y_{37} \, \mathbf{a}_{2}- z_{37} \, \mathbf{a}_{3}$ = $- \left(a x_{37} + c z_{37} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{37} \,\mathbf{\hat{y}}- c z_{37} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H VII
$\mathbf{B_{148}}$ = $x_{37} \, \mathbf{a}_{1}- \left(y_{37} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{37} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{37} + c \left(z_{37} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{37} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{37} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H VII
$\mathbf{B_{149}}$ = $x_{38} \, \mathbf{a}_{1}+y_{38} \, \mathbf{a}_{2}+z_{38} \, \mathbf{a}_{3}$ = $\left(a x_{38} + c z_{38} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{38} \,\mathbf{\hat{y}}+c z_{38} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H VIII
$\mathbf{B_{150}}$ = $- x_{38} \, \mathbf{a}_{1}+\left(y_{38} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{38} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{38} + c \left(z_{38} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{38} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{38} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H VIII
$\mathbf{B_{151}}$ = $- x_{38} \, \mathbf{a}_{1}- y_{38} \, \mathbf{a}_{2}- z_{38} \, \mathbf{a}_{3}$ = $- \left(a x_{38} + c z_{38} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{38} \,\mathbf{\hat{y}}- c z_{38} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H VIII
$\mathbf{B_{152}}$ = $x_{38} \, \mathbf{a}_{1}- \left(y_{38} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{38} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{38} + c \left(z_{38} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{38} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{38} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H VIII
$\mathbf{B_{153}}$ = $x_{39} \, \mathbf{a}_{1}+y_{39} \, \mathbf{a}_{2}+z_{39} \, \mathbf{a}_{3}$ = $\left(a x_{39} + c z_{39} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{39} \,\mathbf{\hat{y}}+c z_{39} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H IX
$\mathbf{B_{154}}$ = $- x_{39} \, \mathbf{a}_{1}+\left(y_{39} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{39} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{39} + c \left(z_{39} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{39} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{39} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H IX
$\mathbf{B_{155}}$ = $- x_{39} \, \mathbf{a}_{1}- y_{39} \, \mathbf{a}_{2}- z_{39} \, \mathbf{a}_{3}$ = $- \left(a x_{39} + c z_{39} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{39} \,\mathbf{\hat{y}}- c z_{39} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H IX
$\mathbf{B_{156}}$ = $x_{39} \, \mathbf{a}_{1}- \left(y_{39} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{39} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{39} + c \left(z_{39} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{39} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{39} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H IX
$\mathbf{B_{157}}$ = $x_{40} \, \mathbf{a}_{1}+y_{40} \, \mathbf{a}_{2}+z_{40} \, \mathbf{a}_{3}$ = $\left(a x_{40} + c z_{40} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{40} \,\mathbf{\hat{y}}+c z_{40} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H X
$\mathbf{B_{158}}$ = $- x_{40} \, \mathbf{a}_{1}+\left(y_{40} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{40} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{40} + c \left(z_{40} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{40} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{40} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H X
$\mathbf{B_{159}}$ = $- x_{40} \, \mathbf{a}_{1}- y_{40} \, \mathbf{a}_{2}- z_{40} \, \mathbf{a}_{3}$ = $- \left(a x_{40} + c z_{40} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{40} \,\mathbf{\hat{y}}- c z_{40} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H X
$\mathbf{B_{160}}$ = $x_{40} \, \mathbf{a}_{1}- \left(y_{40} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{40} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{40} + c \left(z_{40} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{40} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{40} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H X
$\mathbf{B_{161}}$ = $x_{41} \, \mathbf{a}_{1}+y_{41} \, \mathbf{a}_{2}+z_{41} \, \mathbf{a}_{3}$ = $\left(a x_{41} + c z_{41} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{41} \,\mathbf{\hat{y}}+c z_{41} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XI
$\mathbf{B_{162}}$ = $- x_{41} \, \mathbf{a}_{1}+\left(y_{41} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{41} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{41} + c \left(z_{41} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{41} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{41} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XI
$\mathbf{B_{163}}$ = $- x_{41} \, \mathbf{a}_{1}- y_{41} \, \mathbf{a}_{2}- z_{41} \, \mathbf{a}_{3}$ = $- \left(a x_{41} + c z_{41} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{41} \,\mathbf{\hat{y}}- c z_{41} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XI
$\mathbf{B_{164}}$ = $x_{41} \, \mathbf{a}_{1}- \left(y_{41} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{41} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{41} + c \left(z_{41} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{41} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{41} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XI
$\mathbf{B_{165}}$ = $x_{42} \, \mathbf{a}_{1}+y_{42} \, \mathbf{a}_{2}+z_{42} \, \mathbf{a}_{3}$ = $\left(a x_{42} + c z_{42} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{42} \,\mathbf{\hat{y}}+c z_{42} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XII
$\mathbf{B_{166}}$ = $- x_{42} \, \mathbf{a}_{1}+\left(y_{42} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{42} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{42} + c \left(z_{42} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{42} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{42} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XII
$\mathbf{B_{167}}$ = $- x_{42} \, \mathbf{a}_{1}- y_{42} \, \mathbf{a}_{2}- z_{42} \, \mathbf{a}_{3}$ = $- \left(a x_{42} + c z_{42} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{42} \,\mathbf{\hat{y}}- c z_{42} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XII
$\mathbf{B_{168}}$ = $x_{42} \, \mathbf{a}_{1}- \left(y_{42} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{42} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{42} + c \left(z_{42} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{42} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{42} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XII
$\mathbf{B_{169}}$ = $x_{43} \, \mathbf{a}_{1}+y_{43} \, \mathbf{a}_{2}+z_{43} \, \mathbf{a}_{3}$ = $\left(a x_{43} + c z_{43} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{43} \,\mathbf{\hat{y}}+c z_{43} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XIII
$\mathbf{B_{170}}$ = $- x_{43} \, \mathbf{a}_{1}+\left(y_{43} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{43} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{43} + c \left(z_{43} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{43} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{43} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XIII
$\mathbf{B_{171}}$ = $- x_{43} \, \mathbf{a}_{1}- y_{43} \, \mathbf{a}_{2}- z_{43} \, \mathbf{a}_{3}$ = $- \left(a x_{43} + c z_{43} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{43} \,\mathbf{\hat{y}}- c z_{43} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XIII
$\mathbf{B_{172}}$ = $x_{43} \, \mathbf{a}_{1}- \left(y_{43} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{43} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{43} + c \left(z_{43} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{43} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{43} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XIII
$\mathbf{B_{173}}$ = $x_{44} \, \mathbf{a}_{1}+y_{44} \, \mathbf{a}_{2}+z_{44} \, \mathbf{a}_{3}$ = $\left(a x_{44} + c z_{44} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{44} \,\mathbf{\hat{y}}+c z_{44} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XIV
$\mathbf{B_{174}}$ = $- x_{44} \, \mathbf{a}_{1}+\left(y_{44} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{44} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{44} + c \left(z_{44} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{44} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{44} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XIV
$\mathbf{B_{175}}$ = $- x_{44} \, \mathbf{a}_{1}- y_{44} \, \mathbf{a}_{2}- z_{44} \, \mathbf{a}_{3}$ = $- \left(a x_{44} + c z_{44} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{44} \,\mathbf{\hat{y}}- c z_{44} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XIV
$\mathbf{B_{176}}$ = $x_{44} \, \mathbf{a}_{1}- \left(y_{44} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{44} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{44} + c \left(z_{44} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{44} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{44} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XIV
$\mathbf{B_{177}}$ = $x_{45} \, \mathbf{a}_{1}+y_{45} \, \mathbf{a}_{2}+z_{45} \, \mathbf{a}_{3}$ = $\left(a x_{45} + c z_{45} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{45} \,\mathbf{\hat{y}}+c z_{45} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XV
$\mathbf{B_{178}}$ = $- x_{45} \, \mathbf{a}_{1}+\left(y_{45} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{45} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{45} + c \left(z_{45} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{45} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{45} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XV
$\mathbf{B_{179}}$ = $- x_{45} \, \mathbf{a}_{1}- y_{45} \, \mathbf{a}_{2}- z_{45} \, \mathbf{a}_{3}$ = $- \left(a x_{45} + c z_{45} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{45} \,\mathbf{\hat{y}}- c z_{45} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XV
$\mathbf{B_{180}}$ = $x_{45} \, \mathbf{a}_{1}- \left(y_{45} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{45} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{45} + c \left(z_{45} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{45} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{45} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XV
$\mathbf{B_{181}}$ = $x_{46} \, \mathbf{a}_{1}+y_{46} \, \mathbf{a}_{2}+z_{46} \, \mathbf{a}_{3}$ = $\left(a x_{46} + c z_{46} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{46} \,\mathbf{\hat{y}}+c z_{46} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XVI
$\mathbf{B_{182}}$ = $- x_{46} \, \mathbf{a}_{1}+\left(y_{46} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{46} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{46} + c \left(z_{46} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{46} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{46} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XVI
$\mathbf{B_{183}}$ = $- x_{46} \, \mathbf{a}_{1}- y_{46} \, \mathbf{a}_{2}- z_{46} \, \mathbf{a}_{3}$ = $- \left(a x_{46} + c z_{46} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{46} \,\mathbf{\hat{y}}- c z_{46} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XVI
$\mathbf{B_{184}}$ = $x_{46} \, \mathbf{a}_{1}- \left(y_{46} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{46} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{46} + c \left(z_{46} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{46} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{46} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XVI
$\mathbf{B_{185}}$ = $x_{47} \, \mathbf{a}_{1}+y_{47} \, \mathbf{a}_{2}+z_{47} \, \mathbf{a}_{3}$ = $\left(a x_{47} + c z_{47} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{47} \,\mathbf{\hat{y}}+c z_{47} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XVII
$\mathbf{B_{186}}$ = $- x_{47} \, \mathbf{a}_{1}+\left(y_{47} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{47} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{47} + c \left(z_{47} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{47} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{47} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XVII
$\mathbf{B_{187}}$ = $- x_{47} \, \mathbf{a}_{1}- y_{47} \, \mathbf{a}_{2}- z_{47} \, \mathbf{a}_{3}$ = $- \left(a x_{47} + c z_{47} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{47} \,\mathbf{\hat{y}}- c z_{47} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XVII
$\mathbf{B_{188}}$ = $x_{47} \, \mathbf{a}_{1}- \left(y_{47} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{47} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{47} + c \left(z_{47} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{47} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{47} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XVII
$\mathbf{B_{189}}$ = $x_{48} \, \mathbf{a}_{1}+y_{48} \, \mathbf{a}_{2}+z_{48} \, \mathbf{a}_{3}$ = $\left(a x_{48} + c z_{48} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{48} \,\mathbf{\hat{y}}+c z_{48} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XVIII
$\mathbf{B_{190}}$ = $- x_{48} \, \mathbf{a}_{1}+\left(y_{48} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{48} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{48} + c \left(z_{48} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{48} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{48} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XVIII
$\mathbf{B_{191}}$ = $- x_{48} \, \mathbf{a}_{1}- y_{48} \, \mathbf{a}_{2}- z_{48} \, \mathbf{a}_{3}$ = $- \left(a x_{48} + c z_{48} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{48} \,\mathbf{\hat{y}}- c z_{48} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XVIII
$\mathbf{B_{192}}$ = $x_{48} \, \mathbf{a}_{1}- \left(y_{48} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{48} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{48} + c \left(z_{48} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{48} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{48} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XVIII
$\mathbf{B_{193}}$ = $x_{49} \, \mathbf{a}_{1}+y_{49} \, \mathbf{a}_{2}+z_{49} \, \mathbf{a}_{3}$ = $\left(a x_{49} + c z_{49} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{49} \,\mathbf{\hat{y}}+c z_{49} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XIX
$\mathbf{B_{194}}$ = $- x_{49} \, \mathbf{a}_{1}+\left(y_{49} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{49} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{49} + c \left(z_{49} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{49} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{49} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XIX
$\mathbf{B_{195}}$ = $- x_{49} \, \mathbf{a}_{1}- y_{49} \, \mathbf{a}_{2}- z_{49} \, \mathbf{a}_{3}$ = $- \left(a x_{49} + c z_{49} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{49} \,\mathbf{\hat{y}}- c z_{49} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XIX
$\mathbf{B_{196}}$ = $x_{49} \, \mathbf{a}_{1}- \left(y_{49} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{49} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{49} + c \left(z_{49} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{49} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{49} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XIX
$\mathbf{B_{197}}$ = $x_{50} \, \mathbf{a}_{1}+y_{50} \, \mathbf{a}_{2}+z_{50} \, \mathbf{a}_{3}$ = $\left(a x_{50} + c z_{50} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{50} \,\mathbf{\hat{y}}+c z_{50} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XX
$\mathbf{B_{198}}$ = $- x_{50} \, \mathbf{a}_{1}+\left(y_{50} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{50} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{50} + c \left(z_{50} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{50} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{50} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XX
$\mathbf{B_{199}}$ = $- x_{50} \, \mathbf{a}_{1}- y_{50} \, \mathbf{a}_{2}- z_{50} \, \mathbf{a}_{3}$ = $- \left(a x_{50} + c z_{50} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{50} \,\mathbf{\hat{y}}- c z_{50} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XX
$\mathbf{B_{200}}$ = $x_{50} \, \mathbf{a}_{1}- \left(y_{50} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{50} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{50} + c \left(z_{50} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{50} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{50} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XX
$\mathbf{B_{201}}$ = $x_{51} \, \mathbf{a}_{1}+y_{51} \, \mathbf{a}_{2}+z_{51} \, \mathbf{a}_{3}$ = $\left(a x_{51} + c z_{51} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{51} \,\mathbf{\hat{y}}+c z_{51} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XXI
$\mathbf{B_{202}}$ = $- x_{51} \, \mathbf{a}_{1}+\left(y_{51} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{51} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{51} + c \left(z_{51} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{51} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{51} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XXI
$\mathbf{B_{203}}$ = $- x_{51} \, \mathbf{a}_{1}- y_{51} \, \mathbf{a}_{2}- z_{51} \, \mathbf{a}_{3}$ = $- \left(a x_{51} + c z_{51} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{51} \,\mathbf{\hat{y}}- c z_{51} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XXI
$\mathbf{B_{204}}$ = $x_{51} \, \mathbf{a}_{1}- \left(y_{51} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{51} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{51} + c \left(z_{51} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{51} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{51} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XXI
$\mathbf{B_{205}}$ = $x_{52} \, \mathbf{a}_{1}+y_{52} \, \mathbf{a}_{2}+z_{52} \, \mathbf{a}_{3}$ = $\left(a x_{52} + c z_{52} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{52} \,\mathbf{\hat{y}}+c z_{52} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XXII
$\mathbf{B_{206}}$ = $- x_{52} \, \mathbf{a}_{1}+\left(y_{52} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{52} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{52} + c \left(z_{52} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{52} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{52} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XXII
$\mathbf{B_{207}}$ = $- x_{52} \, \mathbf{a}_{1}- y_{52} \, \mathbf{a}_{2}- z_{52} \, \mathbf{a}_{3}$ = $- \left(a x_{52} + c z_{52} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{52} \,\mathbf{\hat{y}}- c z_{52} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XXII
$\mathbf{B_{208}}$ = $x_{52} \, \mathbf{a}_{1}- \left(y_{52} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{52} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{52} + c \left(z_{52} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{52} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{52} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XXII
$\mathbf{B_{209}}$ = $x_{53} \, \mathbf{a}_{1}+y_{53} \, \mathbf{a}_{2}+z_{53} \, \mathbf{a}_{3}$ = $\left(a x_{53} + c z_{53} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{53} \,\mathbf{\hat{y}}+c z_{53} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XXIII
$\mathbf{B_{210}}$ = $- x_{53} \, \mathbf{a}_{1}+\left(y_{53} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{53} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{53} + c \left(z_{53} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{53} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{53} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XXIII
$\mathbf{B_{211}}$ = $- x_{53} \, \mathbf{a}_{1}- y_{53} \, \mathbf{a}_{2}- z_{53} \, \mathbf{a}_{3}$ = $- \left(a x_{53} + c z_{53} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{53} \,\mathbf{\hat{y}}- c z_{53} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XXIII
$\mathbf{B_{212}}$ = $x_{53} \, \mathbf{a}_{1}- \left(y_{53} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{53} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{53} + c \left(z_{53} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{53} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{53} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XXIII
$\mathbf{B_{213}}$ = $x_{54} \, \mathbf{a}_{1}+y_{54} \, \mathbf{a}_{2}+z_{54} \, \mathbf{a}_{3}$ = $\left(a x_{54} + c z_{54} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{54} \,\mathbf{\hat{y}}+c z_{54} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XXIV
$\mathbf{B_{214}}$ = $- x_{54} \, \mathbf{a}_{1}+\left(y_{54} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{54} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{54} + c \left(z_{54} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{54} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{54} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XXIV
$\mathbf{B_{215}}$ = $- x_{54} \, \mathbf{a}_{1}- y_{54} \, \mathbf{a}_{2}- z_{54} \, \mathbf{a}_{3}$ = $- \left(a x_{54} + c z_{54} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{54} \,\mathbf{\hat{y}}- c z_{54} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XXIV
$\mathbf{B_{216}}$ = $x_{54} \, \mathbf{a}_{1}- \left(y_{54} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{54} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{54} + c \left(z_{54} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{54} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{54} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XXIV
$\mathbf{B_{217}}$ = $x_{55} \, \mathbf{a}_{1}+y_{55} \, \mathbf{a}_{2}+z_{55} \, \mathbf{a}_{3}$ = $\left(a x_{55} + c z_{55} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{55} \,\mathbf{\hat{y}}+c z_{55} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XXV
$\mathbf{B_{218}}$ = $- x_{55} \, \mathbf{a}_{1}+\left(y_{55} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{55} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{55} + c \left(z_{55} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{55} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{55} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XXV
$\mathbf{B_{219}}$ = $- x_{55} \, \mathbf{a}_{1}- y_{55} \, \mathbf{a}_{2}- z_{55} \, \mathbf{a}_{3}$ = $- \left(a x_{55} + c z_{55} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{55} \,\mathbf{\hat{y}}- c z_{55} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XXV
$\mathbf{B_{220}}$ = $x_{55} \, \mathbf{a}_{1}- \left(y_{55} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{55} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{55} + c \left(z_{55} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{55} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{55} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XXV
$\mathbf{B_{221}}$ = $x_{56} \, \mathbf{a}_{1}+y_{56} \, \mathbf{a}_{2}+z_{56} \, \mathbf{a}_{3}$ = $\left(a x_{56} + c z_{56} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{56} \,\mathbf{\hat{y}}+c z_{56} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XXVI
$\mathbf{B_{222}}$ = $- x_{56} \, \mathbf{a}_{1}+\left(y_{56} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{56} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{56} + c \left(z_{56} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{56} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{56} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XXVI
$\mathbf{B_{223}}$ = $- x_{56} \, \mathbf{a}_{1}- y_{56} \, \mathbf{a}_{2}- z_{56} \, \mathbf{a}_{3}$ = $- \left(a x_{56} + c z_{56} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{56} \,\mathbf{\hat{y}}- c z_{56} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XXVI
$\mathbf{B_{224}}$ = $x_{56} \, \mathbf{a}_{1}- \left(y_{56} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{56} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{56} + c \left(z_{56} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{56} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{56} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XXVI
$\mathbf{B_{225}}$ = $x_{57} \, \mathbf{a}_{1}+y_{57} \, \mathbf{a}_{2}+z_{57} \, \mathbf{a}_{3}$ = $\left(a x_{57} + c z_{57} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{57} \,\mathbf{\hat{y}}+c z_{57} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XXVII
$\mathbf{B_{226}}$ = $- x_{57} \, \mathbf{a}_{1}+\left(y_{57} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{57} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{57} + c \left(z_{57} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{57} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{57} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XXVII
$\mathbf{B_{227}}$ = $- x_{57} \, \mathbf{a}_{1}- y_{57} \, \mathbf{a}_{2}- z_{57} \, \mathbf{a}_{3}$ = $- \left(a x_{57} + c z_{57} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{57} \,\mathbf{\hat{y}}- c z_{57} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XXVII
$\mathbf{B_{228}}$ = $x_{57} \, \mathbf{a}_{1}- \left(y_{57} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{57} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{57} + c \left(z_{57} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{57} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{57} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XXVII
$\mathbf{B_{229}}$ = $x_{58} \, \mathbf{a}_{1}+y_{58} \, \mathbf{a}_{2}+z_{58} \, \mathbf{a}_{3}$ = $\left(a x_{58} + c z_{58} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{58} \,\mathbf{\hat{y}}+c z_{58} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XXVIII
$\mathbf{B_{230}}$ = $- x_{58} \, \mathbf{a}_{1}+\left(y_{58} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{58} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{58} + c \left(z_{58} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{58} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{58} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XXVIII
$\mathbf{B_{231}}$ = $- x_{58} \, \mathbf{a}_{1}- y_{58} \, \mathbf{a}_{2}- z_{58} \, \mathbf{a}_{3}$ = $- \left(a x_{58} + c z_{58} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{58} \,\mathbf{\hat{y}}- c z_{58} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XXVIII
$\mathbf{B_{232}}$ = $x_{58} \, \mathbf{a}_{1}- \left(y_{58} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{58} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{58} + c \left(z_{58} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{58} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{58} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XXVIII
$\mathbf{B_{233}}$ = $x_{59} \, \mathbf{a}_{1}+y_{59} \, \mathbf{a}_{2}+z_{59} \, \mathbf{a}_{3}$ = $\left(a x_{59} + c z_{59} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{59} \,\mathbf{\hat{y}}+c z_{59} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XXIX
$\mathbf{B_{234}}$ = $- x_{59} \, \mathbf{a}_{1}+\left(y_{59} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{59} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{59} + c \left(z_{59} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{59} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{59} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XXIX
$\mathbf{B_{235}}$ = $- x_{59} \, \mathbf{a}_{1}- y_{59} \, \mathbf{a}_{2}- z_{59} \, \mathbf{a}_{3}$ = $- \left(a x_{59} + c z_{59} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{59} \,\mathbf{\hat{y}}- c z_{59} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XXIX
$\mathbf{B_{236}}$ = $x_{59} \, \mathbf{a}_{1}- \left(y_{59} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{59} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{59} + c \left(z_{59} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{59} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{59} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XXIX
$\mathbf{B_{237}}$ = $x_{60} \, \mathbf{a}_{1}+y_{60} \, \mathbf{a}_{2}+z_{60} \, \mathbf{a}_{3}$ = $\left(a x_{60} + c z_{60} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{60} \,\mathbf{\hat{y}}+c z_{60} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XXX
$\mathbf{B_{238}}$ = $- x_{60} \, \mathbf{a}_{1}+\left(y_{60} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{60} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{60} + c \left(z_{60} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{60} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{60} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XXX
$\mathbf{B_{239}}$ = $- x_{60} \, \mathbf{a}_{1}- y_{60} \, \mathbf{a}_{2}- z_{60} \, \mathbf{a}_{3}$ = $- \left(a x_{60} + c z_{60} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{60} \,\mathbf{\hat{y}}- c z_{60} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XXX
$\mathbf{B_{240}}$ = $x_{60} \, \mathbf{a}_{1}- \left(y_{60} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{60} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{60} + c \left(z_{60} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{60} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{60} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) H XXX
$\mathbf{B_{241}}$ = $x_{61} \, \mathbf{a}_{1}+y_{61} \, \mathbf{a}_{2}+z_{61} \, \mathbf{a}_{3}$ = $\left(a x_{61} + c z_{61} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{61} \,\mathbf{\hat{y}}+c z_{61} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) N I
$\mathbf{B_{242}}$ = $- x_{61} \, \mathbf{a}_{1}+\left(y_{61} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{61} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{61} + c \left(z_{61} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{61} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{61} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) N I
$\mathbf{B_{243}}$ = $- x_{61} \, \mathbf{a}_{1}- y_{61} \, \mathbf{a}_{2}- z_{61} \, \mathbf{a}_{3}$ = $- \left(a x_{61} + c z_{61} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{61} \,\mathbf{\hat{y}}- c z_{61} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) N I
$\mathbf{B_{244}}$ = $x_{61} \, \mathbf{a}_{1}- \left(y_{61} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{61} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{61} + c \left(z_{61} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{61} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{61} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) N I
$\mathbf{B_{245}}$ = $x_{62} \, \mathbf{a}_{1}+y_{62} \, \mathbf{a}_{2}+z_{62} \, \mathbf{a}_{3}$ = $\left(a x_{62} + c z_{62} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{62} \,\mathbf{\hat{y}}+c z_{62} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) N II
$\mathbf{B_{246}}$ = $- x_{62} \, \mathbf{a}_{1}+\left(y_{62} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{62} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{62} + c \left(z_{62} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{62} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{62} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) N II
$\mathbf{B_{247}}$ = $- x_{62} \, \mathbf{a}_{1}- y_{62} \, \mathbf{a}_{2}- z_{62} \, \mathbf{a}_{3}$ = $- \left(a x_{62} + c z_{62} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{62} \,\mathbf{\hat{y}}- c z_{62} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) N II
$\mathbf{B_{248}}$ = $x_{62} \, \mathbf{a}_{1}- \left(y_{62} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{62} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{62} + c \left(z_{62} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{62} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{62} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) N II
$\mathbf{B_{249}}$ = $x_{63} \, \mathbf{a}_{1}+y_{63} \, \mathbf{a}_{2}+z_{63} \, \mathbf{a}_{3}$ = $\left(a x_{63} + c z_{63} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{63} \,\mathbf{\hat{y}}+c z_{63} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) N III
$\mathbf{B_{250}}$ = $- x_{63} \, \mathbf{a}_{1}+\left(y_{63} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{63} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{63} + c \left(z_{63} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{63} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{63} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) N III
$\mathbf{B_{251}}$ = $- x_{63} \, \mathbf{a}_{1}- y_{63} \, \mathbf{a}_{2}- z_{63} \, \mathbf{a}_{3}$ = $- \left(a x_{63} + c z_{63} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{63} \,\mathbf{\hat{y}}- c z_{63} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) N III
$\mathbf{B_{252}}$ = $x_{63} \, \mathbf{a}_{1}- \left(y_{63} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{63} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{63} + c \left(z_{63} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{63} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{63} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) N III
$\mathbf{B_{253}}$ = $x_{64} \, \mathbf{a}_{1}+y_{64} \, \mathbf{a}_{2}+z_{64} \, \mathbf{a}_{3}$ = $\left(a x_{64} + c z_{64} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{64} \,\mathbf{\hat{y}}+c z_{64} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) N IV
$\mathbf{B_{254}}$ = $- x_{64} \, \mathbf{a}_{1}+\left(y_{64} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{64} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{64} + c \left(z_{64} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{64} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{64} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) N IV
$\mathbf{B_{255}}$ = $- x_{64} \, \mathbf{a}_{1}- y_{64} \, \mathbf{a}_{2}- z_{64} \, \mathbf{a}_{3}$ = $- \left(a x_{64} + c z_{64} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{64} \,\mathbf{\hat{y}}- c z_{64} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) N IV
$\mathbf{B_{256}}$ = $x_{64} \, \mathbf{a}_{1}- \left(y_{64} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{64} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{64} + c \left(z_{64} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{64} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{64} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) N IV
$\mathbf{B_{257}}$ = $x_{65} \, \mathbf{a}_{1}+y_{65} \, \mathbf{a}_{2}+z_{65} \, \mathbf{a}_{3}$ = $\left(a x_{65} + c z_{65} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{65} \,\mathbf{\hat{y}}+c z_{65} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) N V
$\mathbf{B_{258}}$ = $- x_{65} \, \mathbf{a}_{1}+\left(y_{65} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{65} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{65} + c \left(z_{65} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{65} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{65} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) N V
$\mathbf{B_{259}}$ = $- x_{65} \, \mathbf{a}_{1}- y_{65} \, \mathbf{a}_{2}- z_{65} \, \mathbf{a}_{3}$ = $- \left(a x_{65} + c z_{65} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{65} \,\mathbf{\hat{y}}- c z_{65} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) N V
$\mathbf{B_{260}}$ = $x_{65} \, \mathbf{a}_{1}- \left(y_{65} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{65} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{65} + c \left(z_{65} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{65} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{65} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) N V
$\mathbf{B_{261}}$ = $x_{66} \, \mathbf{a}_{1}+y_{66} \, \mathbf{a}_{2}+z_{66} \, \mathbf{a}_{3}$ = $\left(a x_{66} + c z_{66} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{66} \,\mathbf{\hat{y}}+c z_{66} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) N VI
$\mathbf{B_{262}}$ = $- x_{66} \, \mathbf{a}_{1}+\left(y_{66} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{66} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{66} + c \left(z_{66} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{66} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{66} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) N VI
$\mathbf{B_{263}}$ = $- x_{66} \, \mathbf{a}_{1}- y_{66} \, \mathbf{a}_{2}- z_{66} \, \mathbf{a}_{3}$ = $- \left(a x_{66} + c z_{66} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{66} \,\mathbf{\hat{y}}- c z_{66} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) N VI
$\mathbf{B_{264}}$ = $x_{66} \, \mathbf{a}_{1}- \left(y_{66} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{66} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{66} + c \left(z_{66} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{66} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{66} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) N VI
$\mathbf{B_{265}}$ = $x_{67} \, \mathbf{a}_{1}+y_{67} \, \mathbf{a}_{2}+z_{67} \, \mathbf{a}_{3}$ = $\left(a x_{67} + c z_{67} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{67} \,\mathbf{\hat{y}}+c z_{67} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) N VII
$\mathbf{B_{266}}$ = $- x_{67} \, \mathbf{a}_{1}+\left(y_{67} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{67} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{67} + c \left(z_{67} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{67} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{67} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) N VII
$\mathbf{B_{267}}$ = $- x_{67} \, \mathbf{a}_{1}- y_{67} \, \mathbf{a}_{2}- z_{67} \, \mathbf{a}_{3}$ = $- \left(a x_{67} + c z_{67} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{67} \,\mathbf{\hat{y}}- c z_{67} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) N VII
$\mathbf{B_{268}}$ = $x_{67} \, \mathbf{a}_{1}- \left(y_{67} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{67} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{67} + c \left(z_{67} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{67} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{67} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) N VII
$\mathbf{B_{269}}$ = $x_{68} \, \mathbf{a}_{1}+y_{68} \, \mathbf{a}_{2}+z_{68} \, \mathbf{a}_{3}$ = $\left(a x_{68} + c z_{68} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{68} \,\mathbf{\hat{y}}+c z_{68} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) N VIII
$\mathbf{B_{270}}$ = $- x_{68} \, \mathbf{a}_{1}+\left(y_{68} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{68} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{68} + c \left(z_{68} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{68} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{68} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) N VIII
$\mathbf{B_{271}}$ = $- x_{68} \, \mathbf{a}_{1}- y_{68} \, \mathbf{a}_{2}- z_{68} \, \mathbf{a}_{3}$ = $- \left(a x_{68} + c z_{68} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{68} \,\mathbf{\hat{y}}- c z_{68} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) N VIII
$\mathbf{B_{272}}$ = $x_{68} \, \mathbf{a}_{1}- \left(y_{68} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{68} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{68} + c \left(z_{68} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{68} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{68} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) N VIII
$\mathbf{B_{273}}$ = $x_{69} \, \mathbf{a}_{1}+y_{69} \, \mathbf{a}_{2}+z_{69} \, \mathbf{a}_{3}$ = $\left(a x_{69} + c z_{69} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{69} \,\mathbf{\hat{y}}+c z_{69} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) O I
$\mathbf{B_{274}}$ = $- x_{69} \, \mathbf{a}_{1}+\left(y_{69} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{69} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{69} + c \left(z_{69} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{69} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{69} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) O I
$\mathbf{B_{275}}$ = $- x_{69} \, \mathbf{a}_{1}- y_{69} \, \mathbf{a}_{2}- z_{69} \, \mathbf{a}_{3}$ = $- \left(a x_{69} + c z_{69} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{69} \,\mathbf{\hat{y}}- c z_{69} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) O I
$\mathbf{B_{276}}$ = $x_{69} \, \mathbf{a}_{1}- \left(y_{69} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{69} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{69} + c \left(z_{69} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{69} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{69} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) O I
$\mathbf{B_{277}}$ = $x_{70} \, \mathbf{a}_{1}+y_{70} \, \mathbf{a}_{2}+z_{70} \, \mathbf{a}_{3}$ = $\left(a x_{70} + c z_{70} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{70} \,\mathbf{\hat{y}}+c z_{70} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) O II
$\mathbf{B_{278}}$ = $- x_{70} \, \mathbf{a}_{1}+\left(y_{70} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{70} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{70} + c \left(z_{70} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{70} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{70} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) O II
$\mathbf{B_{279}}$ = $- x_{70} \, \mathbf{a}_{1}- y_{70} \, \mathbf{a}_{2}- z_{70} \, \mathbf{a}_{3}$ = $- \left(a x_{70} + c z_{70} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{70} \,\mathbf{\hat{y}}- c z_{70} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) O II
$\mathbf{B_{280}}$ = $x_{70} \, \mathbf{a}_{1}- \left(y_{70} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{70} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{70} + c \left(z_{70} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{70} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{70} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) O II
$\mathbf{B_{281}}$ = $x_{71} \, \mathbf{a}_{1}+y_{71} \, \mathbf{a}_{2}+z_{71} \, \mathbf{a}_{3}$ = $\left(a x_{71} + c z_{71} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{71} \,\mathbf{\hat{y}}+c z_{71} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) O III
$\mathbf{B_{282}}$ = $- x_{71} \, \mathbf{a}_{1}+\left(y_{71} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{71} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{71} + c \left(z_{71} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{71} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{71} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) O III
$\mathbf{B_{283}}$ = $- x_{71} \, \mathbf{a}_{1}- y_{71} \, \mathbf{a}_{2}- z_{71} \, \mathbf{a}_{3}$ = $- \left(a x_{71} + c z_{71} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{71} \,\mathbf{\hat{y}}- c z_{71} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) O III
$\mathbf{B_{284}}$ = $x_{71} \, \mathbf{a}_{1}- \left(y_{71} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{71} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{71} + c \left(z_{71} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{71} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{71} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) O III
$\mathbf{B_{285}}$ = $x_{72} \, \mathbf{a}_{1}+y_{72} \, \mathbf{a}_{2}+z_{72} \, \mathbf{a}_{3}$ = $\left(a x_{72} + c z_{72} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{72} \,\mathbf{\hat{y}}+c z_{72} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) O IV
$\mathbf{B_{286}}$ = $- x_{72} \, \mathbf{a}_{1}+\left(y_{72} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{72} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{72} + c \left(z_{72} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{72} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{72} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) O IV
$\mathbf{B_{287}}$ = $- x_{72} \, \mathbf{a}_{1}- y_{72} \, \mathbf{a}_{2}- z_{72} \, \mathbf{a}_{3}$ = $- \left(a x_{72} + c z_{72} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{72} \,\mathbf{\hat{y}}- c z_{72} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) O IV
$\mathbf{B_{288}}$ = $x_{72} \, \mathbf{a}_{1}- \left(y_{72} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{72} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{72} + c \left(z_{72} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{72} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{72} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) O IV
$\mathbf{B_{289}}$ = $x_{73} \, \mathbf{a}_{1}+y_{73} \, \mathbf{a}_{2}+z_{73} \, \mathbf{a}_{3}$ = $\left(a x_{73} + c z_{73} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{73} \,\mathbf{\hat{y}}+c z_{73} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) O V
$\mathbf{B_{290}}$ = $- x_{73} \, \mathbf{a}_{1}+\left(y_{73} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{73} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{73} + c \left(z_{73} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{73} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{73} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) O V
$\mathbf{B_{291}}$ = $- x_{73} \, \mathbf{a}_{1}- y_{73} \, \mathbf{a}_{2}- z_{73} \, \mathbf{a}_{3}$ = $- \left(a x_{73} + c z_{73} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{73} \,\mathbf{\hat{y}}- c z_{73} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) O V
$\mathbf{B_{292}}$ = $x_{73} \, \mathbf{a}_{1}- \left(y_{73} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{73} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{73} + c \left(z_{73} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{73} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{73} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) O V
$\mathbf{B_{293}}$ = $x_{74} \, \mathbf{a}_{1}+y_{74} \, \mathbf{a}_{2}+z_{74} \, \mathbf{a}_{3}$ = $\left(a x_{74} + c z_{74} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{74} \,\mathbf{\hat{y}}+c z_{74} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) O VI
$\mathbf{B_{294}}$ = $- x_{74} \, \mathbf{a}_{1}+\left(y_{74} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{74} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{74} + c \left(z_{74} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{74} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{74} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) O VI
$\mathbf{B_{295}}$ = $- x_{74} \, \mathbf{a}_{1}- y_{74} \, \mathbf{a}_{2}- z_{74} \, \mathbf{a}_{3}$ = $- \left(a x_{74} + c z_{74} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{74} \,\mathbf{\hat{y}}- c z_{74} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) O VI
$\mathbf{B_{296}}$ = $x_{74} \, \mathbf{a}_{1}- \left(y_{74} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{74} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{74} + c \left(z_{74} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{74} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{74} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) O VI
$\mathbf{B_{297}}$ = $x_{75} \, \mathbf{a}_{1}+y_{75} \, \mathbf{a}_{2}+z_{75} \, \mathbf{a}_{3}$ = $\left(a x_{75} + c z_{75} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{75} \,\mathbf{\hat{y}}+c z_{75} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) O VII
$\mathbf{B_{298}}$ = $- x_{75} \, \mathbf{a}_{1}+\left(y_{75} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{75} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{75} + c \left(z_{75} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{75} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{75} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) O VII
$\mathbf{B_{299}}$ = $- x_{75} \, \mathbf{a}_{1}- y_{75} \, \mathbf{a}_{2}- z_{75} \, \mathbf{a}_{3}$ = $- \left(a x_{75} + c z_{75} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{75} \,\mathbf{\hat{y}}- c z_{75} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) O VII
$\mathbf{B_{300}}$ = $x_{75} \, \mathbf{a}_{1}- \left(y_{75} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{75} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{75} + c \left(z_{75} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{75} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{75} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) O VII
$\mathbf{B_{301}}$ = $x_{76} \, \mathbf{a}_{1}+y_{76} \, \mathbf{a}_{2}+z_{76} \, \mathbf{a}_{3}$ = $\left(a x_{76} + c z_{76} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{76} \,\mathbf{\hat{y}}+c z_{76} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) O VIII
$\mathbf{B_{302}}$ = $- x_{76} \, \mathbf{a}_{1}+\left(y_{76} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{76} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{76} + c \left(z_{76} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{76} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{76} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) O VIII
$\mathbf{B_{303}}$ = $- x_{76} \, \mathbf{a}_{1}- y_{76} \, \mathbf{a}_{2}- z_{76} \, \mathbf{a}_{3}$ = $- \left(a x_{76} + c z_{76} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{76} \,\mathbf{\hat{y}}- c z_{76} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) O VIII
$\mathbf{B_{304}}$ = $x_{76} \, \mathbf{a}_{1}- \left(y_{76} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{76} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{76} + c \left(z_{76} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{76} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{76} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) O VIII
$\mathbf{B_{305}}$ = $x_{77} \, \mathbf{a}_{1}+y_{77} \, \mathbf{a}_{2}+z_{77} \, \mathbf{a}_{3}$ = $\left(a x_{77} + c z_{77} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{77} \,\mathbf{\hat{y}}+c z_{77} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) Zn I
$\mathbf{B_{306}}$ = $- x_{77} \, \mathbf{a}_{1}+\left(y_{77} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(z_{77} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{77} + c \left(z_{77} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b \left(y_{77} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c \left(z_{77} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) Zn I
$\mathbf{B_{307}}$ = $- x_{77} \, \mathbf{a}_{1}- y_{77} \, \mathbf{a}_{2}- z_{77} \, \mathbf{a}_{3}$ = $- \left(a x_{77} + c z_{77} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{77} \,\mathbf{\hat{y}}- c z_{77} \sin{\beta} \,\mathbf{\hat{z}}$ (4e) Zn I
$\mathbf{B_{308}}$ = $x_{77} \, \mathbf{a}_{1}- \left(y_{77} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{77} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{77} + c \left(z_{77} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b \left(y_{77} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c \left(z_{77} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (4e) Zn I

References

  • L. Findorá'ková, K. Györyová, M. K. J. Moncol, and M. Melník, Crystal Structure and Physical Characterisation of [Zn$_{2}$(Benzoato)$_{4}$(Caffeine)$_{2}$]$\cdot$2 Caffeine, J. Chem. Crystallogr. 40, 145–150 (2010), doi:10.1007/s10870-009-9619-8.

Prototype Generator

aflow --proto=A30B30C8D8E_mP308_14_30e_30e_8e_8e_e --params=$a,b/a,c/a,\beta,x_{1},y_{1},z_{1},x_{2},y_{2},z_{2},x_{3},y_{3},z_{3},x_{4},y_{4},z_{4},x_{5},y_{5},z_{5},x_{6},y_{6},z_{6},x_{7},y_{7},z_{7},x_{8},y_{8},z_{8},x_{9},y_{9},z_{9},x_{10},y_{10},z_{10},x_{11},y_{11},z_{11},x_{12},y_{12},z_{12},x_{13},y_{13},z_{13},x_{14},y_{14},z_{14},x_{15},y_{15},z_{15},x_{16},y_{16},z_{16},x_{17},y_{17},z_{17},x_{18},y_{18},z_{18},x_{19},y_{19},z_{19},x_{20},y_{20},z_{20},x_{21},y_{21},z_{21},x_{22},y_{22},z_{22},x_{23},y_{23},z_{23},x_{24},y_{24},z_{24},x_{25},y_{25},z_{25},x_{26},y_{26},z_{26},x_{27},y_{27},z_{27},x_{28},y_{28},z_{28},x_{29},y_{29},z_{29},x_{30},y_{30},z_{30},x_{31},y_{31},z_{31},x_{32},y_{32},z_{32},x_{33},y_{33},z_{33},x_{34},y_{34},z_{34},x_{35},y_{35},z_{35},x_{36},y_{36},z_{36},x_{37},y_{37},z_{37},x_{38},y_{38},z_{38},x_{39},y_{39},z_{39},x_{40},y_{40},z_{40},x_{41},y_{41},z_{41},x_{42},y_{42},z_{42},x_{43},y_{43},z_{43},x_{44},y_{44},z_{44},x_{45},y_{45},z_{45},x_{46},y_{46},z_{46},x_{47},y_{47},z_{47},x_{48},y_{48},z_{48},x_{49},y_{49},z_{49},x_{50},y_{50},z_{50},x_{51},y_{51},z_{51},x_{52},y_{52},z_{52},x_{53},y_{53},z_{53},x_{54},y_{54},z_{54},x_{55},y_{55},z_{55},x_{56},y_{56},z_{56},x_{57},y_{57},z_{57},x_{58},y_{58},z_{58},x_{59},y_{59},z_{59},x_{60},y_{60},z_{60},x_{61},y_{61},z_{61},x_{62},y_{62},z_{62},x_{63},y_{63},z_{63},x_{64},y_{64},z_{64},x_{65},y_{65},z_{65},x_{66},y_{66},z_{66},x_{67},y_{67},z_{67},x_{68},y_{68},z_{68},x_{69},y_{69},z_{69},x_{70},y_{70},z_{70},x_{71},y_{71},z_{71},x_{72},y_{72},z_{72},x_{73},y_{73},z_{73},x_{74},y_{74},z_{74},x_{75},y_{75},z_{75},x_{76},y_{76},z_{76},x_{77},y_{77},z_{77}$

Species:

Running:

Output: