AFLOW Prototype: A3B2_tI160_142_3g_abcef-001
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/4A1E
or
https://aflow.org/p/A3B2_tI160_142_3g_abcef-001
or
PDF Version
Prototype | Be$_{3}$P$_{2}$ |
AFLOW prototype label | A3B2_tI160_142_3g_abcef-001 |
ICSD | 42038 |
Pearson symbol | tI160 |
Space group number | 142 |
Space group symbol | $I4_1/acd$ |
AFLOW prototype command |
aflow --proto=A3B2_tI160_142_3g_abcef-001
--params=$a, \allowbreak c/a, \allowbreak x_{4}, \allowbreak x_{5}, \allowbreak x_{6}, \allowbreak y_{6}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak y_{7}, \allowbreak z_{7}, \allowbreak x_{8}, \allowbreak y_{8}, \allowbreak z_{8}$ |
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $\frac{5}{8} \, \mathbf{a}_{1}+\frac{3}{8} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{3}{8}c \,\mathbf{\hat{z}}$ | (8a) | P I |
$\mathbf{B_{2}}$ | = | $\frac{3}{8} \, \mathbf{a}_{1}+\frac{5}{8} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ | (8a) | P I |
$\mathbf{B_{3}}$ | = | $\frac{7}{8} \, \mathbf{a}_{1}+\frac{1}{8} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $\frac{3}{4}a \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ | (8a) | P I |
$\mathbf{B_{4}}$ | = | $\frac{1}{8} \, \mathbf{a}_{1}+\frac{7}{8} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}+\frac{3}{8}c \,\mathbf{\hat{z}}$ | (8a) | P I |
$\mathbf{B_{5}}$ | = | $\frac{3}{8} \, \mathbf{a}_{1}+\frac{1}{8} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ | (8b) | P II |
$\mathbf{B_{6}}$ | = | $\frac{1}{8} \, \mathbf{a}_{1}+\frac{3}{8} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- \frac{1}{8}c \,\mathbf{\hat{z}}$ | (8b) | P II |
$\mathbf{B_{7}}$ | = | $\frac{5}{8} \, \mathbf{a}_{1}+\frac{7}{8} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{3}{8}c \,\mathbf{\hat{z}}$ | (8b) | P II |
$\mathbf{B_{8}}$ | = | $\frac{7}{8} \, \mathbf{a}_{1}+\frac{5}{8} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{5}{8}c \,\mathbf{\hat{z}}$ | (8b) | P II |
$\mathbf{B_{9}}$ | = | $0$ | = | $0$ | (16c) | P III |
$\mathbf{B_{10}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}$ | (16c) | P III |
$\mathbf{B_{11}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (16c) | P III |
$\mathbf{B_{12}}$ | = | $\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- \frac{1}{4}c \,\mathbf{\hat{z}}$ | (16c) | P III |
$\mathbf{B_{13}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}$ | (16c) | P III |
$\mathbf{B_{14}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ | = | $\frac{1}{2}c \,\mathbf{\hat{z}}$ | (16c) | P III |
$\mathbf{B_{15}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}$ | = | $- \frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (16c) | P III |
$\mathbf{B_{16}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (16c) | P III |
$\mathbf{B_{17}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\left(x_{4} + \frac{1}{4}\right) \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ | = | $a x_{4} \,\mathbf{\hat{x}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (16e) | P IV |
$\mathbf{B_{18}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}- \left(x_{4} - \frac{1}{4}\right) \, \mathbf{a}_{2}- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (16e) | P IV |
$\mathbf{B_{19}}$ | = | $\left(x_{4} + \frac{1}{4}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+a \left(x_{4} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (16e) | P IV |
$\mathbf{B_{20}}$ | = | $- \left(x_{4} - \frac{1}{4}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}- \left(x_{4} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}- a \left(x_{4} - \frac{1}{4}\right) \,\mathbf{\hat{y}}$ | (16e) | P IV |
$\mathbf{B_{21}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}- \left(x_{4} - \frac{3}{4}\right) \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{x}}+\frac{3}{4}c \,\mathbf{\hat{z}}$ | (16e) | P IV |
$\mathbf{B_{22}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\left(x_{4} + \frac{3}{4}\right) \, \mathbf{a}_{2}+\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a \left(x_{4} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (16e) | P IV |
$\mathbf{B_{23}}$ | = | $- \left(x_{4} - \frac{3}{4}\right) \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ | = | $- \frac{1}{4}a \,\mathbf{\hat{x}}- a \left(x_{4} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (16e) | P IV |
$\mathbf{B_{24}}$ | = | $\left(x_{4} + \frac{3}{4}\right) \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\left(x_{4} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+a \left(x_{4} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (16e) | P IV |
$\mathbf{B_{25}}$ | = | $\left(x_{5} + \frac{3}{8}\right) \, \mathbf{a}_{1}+\left(x_{5} + \frac{1}{8}\right) \, \mathbf{a}_{2}+\left(2 x_{5} + \frac{1}{4}\right) \, \mathbf{a}_{3}$ | = | $a x_{5} \,\mathbf{\hat{x}}+a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ | (16f) | P V |
$\mathbf{B_{26}}$ | = | $- \left(x_{5} - \frac{3}{8}\right) \, \mathbf{a}_{1}- \left(x_{5} - \frac{1}{8}\right) \, \mathbf{a}_{2}- \left(2 x_{5} - \frac{1}{4}\right) \, \mathbf{a}_{3}$ | = | $- a x_{5} \,\mathbf{\hat{x}}- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{1}{8}c \,\mathbf{\hat{z}}$ | (16f) | P V |
$\mathbf{B_{27}}$ | = | $\left(x_{5} + \frac{1}{8}\right) \, \mathbf{a}_{1}- \left(x_{5} - \frac{3}{8}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- \frac{1}{8}c \,\mathbf{\hat{z}}$ | (16f) | P V |
$\mathbf{B_{28}}$ | = | $- \left(x_{5} - \frac{1}{8}\right) \, \mathbf{a}_{1}+\left(x_{5} + \frac{3}{8}\right) \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- \frac{1}{8}c \,\mathbf{\hat{z}}$ | (16f) | P V |
$\mathbf{B_{29}}$ | = | $- \left(x_{5} - \frac{5}{8}\right) \, \mathbf{a}_{1}- \left(x_{5} - \frac{7}{8}\right) \, \mathbf{a}_{2}- \left(2 x_{5} - \frac{3}{4}\right) \, \mathbf{a}_{3}$ | = | $- a \left(x_{5} - \frac{1}{2}\right) \,\mathbf{\hat{x}}- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{3}{8}c \,\mathbf{\hat{z}}$ | (16f) | P V |
$\mathbf{B_{30}}$ | = | $\left(x_{5} + \frac{5}{8}\right) \, \mathbf{a}_{1}+\left(x_{5} + \frac{7}{8}\right) \, \mathbf{a}_{2}+\left(2 x_{5} + \frac{3}{4}\right) \, \mathbf{a}_{3}$ | = | $a \left(x_{5} + \frac{1}{2}\right) \,\mathbf{\hat{x}}+a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{3}{8}c \,\mathbf{\hat{z}}$ | (16f) | P V |
$\mathbf{B_{31}}$ | = | $- \left(x_{5} - \frac{7}{8}\right) \, \mathbf{a}_{1}+\left(x_{5} + \frac{5}{8}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $a x_{5} \,\mathbf{\hat{x}}- a \left(x_{5} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{5}{8}c \,\mathbf{\hat{z}}$ | (16f) | P V |
$\mathbf{B_{32}}$ | = | $\left(x_{5} + \frac{7}{8}\right) \, \mathbf{a}_{1}- \left(x_{5} - \frac{5}{8}\right) \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $- a x_{5} \,\mathbf{\hat{x}}+a \left(x_{5} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+\frac{5}{8}c \,\mathbf{\hat{z}}$ | (16f) | P V |
$\mathbf{B_{33}}$ | = | $\left(y_{6} + z_{6}\right) \, \mathbf{a}_{1}+\left(x_{6} + z_{6}\right) \, \mathbf{a}_{2}+\left(x_{6} + y_{6}\right) \, \mathbf{a}_{3}$ | = | $a x_{6} \,\mathbf{\hat{x}}+a y_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ | (32g) | Be I |
$\mathbf{B_{34}}$ | = | $\left(- y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{6} - z_{6}\right) \, \mathbf{a}_{2}- \left(x_{6} + y_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a x_{6} \,\mathbf{\hat{x}}- a \left(y_{6} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ | (32g) | Be I |
$\mathbf{B_{35}}$ | = | $\left(x_{6} + z_{6}\right) \, \mathbf{a}_{1}+\left(- y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{6} - y_{6}\right) \, \mathbf{a}_{3}$ | = | $- a \left(y_{6} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{6} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (32g) | Be I |
$\mathbf{B_{36}}$ | = | $- \left(x_{6} - z_{6}\right) \, \mathbf{a}_{1}+\left(y_{6} + z_{6}\right) \, \mathbf{a}_{2}+\left(- x_{6} + y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a \left(y_{6} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{6} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{6} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (32g) | Be I |
$\mathbf{B_{37}}$ | = | $\left(y_{6} - z_{6}\right) \, \mathbf{a}_{1}- \left(x_{6} + z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{6} + y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a \left(x_{6} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a y_{6} \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ | (32g) | Be I |
$\mathbf{B_{38}}$ | = | $- \left(y_{6} + z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{6} - z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{6} - y_{6}\right) \, \mathbf{a}_{3}$ | = | $a x_{6} \,\mathbf{\hat{x}}- a y_{6} \,\mathbf{\hat{y}}- c \left(z_{6} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (32g) | Be I |
$\mathbf{B_{39}}$ | = | $\left(x_{6} - z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{6} - z_{6}\right) \, \mathbf{a}_{2}+\left(x_{6} + y_{6}\right) \, \mathbf{a}_{3}$ | = | $a \left(y_{6} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{6} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- c \left(z_{6} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (32g) | Be I |
$\mathbf{B_{40}}$ | = | $- \left(x_{6} + z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{6} + z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{6} + y_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a \left(y_{6} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{6} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- c \left(z_{6} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (32g) | Be I |
$\mathbf{B_{41}}$ | = | $- \left(y_{6} + z_{6}\right) \, \mathbf{a}_{1}- \left(x_{6} + z_{6}\right) \, \mathbf{a}_{2}- \left(x_{6} + y_{6}\right) \, \mathbf{a}_{3}$ | = | $- a x_{6} \,\mathbf{\hat{x}}- a y_{6} \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ | (32g) | Be I |
$\mathbf{B_{42}}$ | = | $\left(y_{6} - z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{6} - z_{6}\right) \, \mathbf{a}_{2}+\left(x_{6} + y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a x_{6} \,\mathbf{\hat{x}}+a \left(y_{6} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ | (32g) | Be I |
$\mathbf{B_{43}}$ | = | $- \left(x_{6} + z_{6}\right) \, \mathbf{a}_{1}+\left(y_{6} - z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{6} - y_{6}\right) \, \mathbf{a}_{3}$ | = | $a \left(y_{6} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{6} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- c \left(z_{6} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (32g) | Be I |
$\mathbf{B_{44}}$ | = | $\left(x_{6} - z_{6}\right) \, \mathbf{a}_{1}- \left(y_{6} + z_{6}\right) \, \mathbf{a}_{2}+\left(x_{6} - y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a \left(y_{6} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{6} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- c \left(z_{6} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (32g) | Be I |
$\mathbf{B_{45}}$ | = | $- \left(y_{6} - z_{6}\right) \, \mathbf{a}_{1}+\left(x_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{6} - y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a \left(x_{6} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a y_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ | (32g) | Be I |
$\mathbf{B_{46}}$ | = | $\left(y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{6} - y_{6}\right) \, \mathbf{a}_{3}$ | = | $- a x_{6} \,\mathbf{\hat{x}}+a y_{6} \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (32g) | Be I |
$\mathbf{B_{47}}$ | = | $\left(- x_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{6} - z_{6}\right) \, \mathbf{a}_{2}- \left(x_{6} + y_{6}\right) \, \mathbf{a}_{3}$ | = | $- a \left(y_{6} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{6} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (32g) | Be I |
$\mathbf{B_{48}}$ | = | $\left(x_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{6} + z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{6} + y_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a \left(y_{6} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{6} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (32g) | Be I |
$\mathbf{B_{49}}$ | = | $\left(y_{7} + z_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} + z_{7}\right) \, \mathbf{a}_{2}+\left(x_{7} + y_{7}\right) \, \mathbf{a}_{3}$ | = | $a x_{7} \,\mathbf{\hat{x}}+a y_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ | (32g) | Be II |
$\mathbf{B_{50}}$ | = | $\left(- y_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{7} - z_{7}\right) \, \mathbf{a}_{2}- \left(x_{7} + y_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a x_{7} \,\mathbf{\hat{x}}- a \left(y_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ | (32g) | Be II |
$\mathbf{B_{51}}$ | = | $\left(x_{7} + z_{7}\right) \, \mathbf{a}_{1}+\left(- y_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{7} - y_{7}\right) \, \mathbf{a}_{3}$ | = | $- a \left(y_{7} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{7} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (32g) | Be II |
$\mathbf{B_{52}}$ | = | $- \left(x_{7} - z_{7}\right) \, \mathbf{a}_{1}+\left(y_{7} + z_{7}\right) \, \mathbf{a}_{2}+\left(- x_{7} + y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a \left(y_{7} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{7} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{7} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (32g) | Be II |
$\mathbf{B_{53}}$ | = | $\left(y_{7} - z_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} + z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{7} + y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a y_{7} \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ | (32g) | Be II |
$\mathbf{B_{54}}$ | = | $- \left(y_{7} + z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{7} - z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{7} - y_{7}\right) \, \mathbf{a}_{3}$ | = | $a x_{7} \,\mathbf{\hat{x}}- a y_{7} \,\mathbf{\hat{y}}- c \left(z_{7} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (32g) | Be II |
$\mathbf{B_{55}}$ | = | $\left(x_{7} - z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{7} - z_{7}\right) \, \mathbf{a}_{2}+\left(x_{7} + y_{7}\right) \, \mathbf{a}_{3}$ | = | $a \left(y_{7} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{7} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- c \left(z_{7} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (32g) | Be II |
$\mathbf{B_{56}}$ | = | $- \left(x_{7} + z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{7} + z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{7} + y_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a \left(y_{7} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{7} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- c \left(z_{7} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (32g) | Be II |
$\mathbf{B_{57}}$ | = | $- \left(y_{7} + z_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} + z_{7}\right) \, \mathbf{a}_{2}- \left(x_{7} + y_{7}\right) \, \mathbf{a}_{3}$ | = | $- a x_{7} \,\mathbf{\hat{x}}- a y_{7} \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ | (32g) | Be II |
$\mathbf{B_{58}}$ | = | $\left(y_{7} - z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{7} - z_{7}\right) \, \mathbf{a}_{2}+\left(x_{7} + y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a x_{7} \,\mathbf{\hat{x}}+a \left(y_{7} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ | (32g) | Be II |
$\mathbf{B_{59}}$ | = | $- \left(x_{7} + z_{7}\right) \, \mathbf{a}_{1}+\left(y_{7} - z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{7} - y_{7}\right) \, \mathbf{a}_{3}$ | = | $a \left(y_{7} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{7} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- c \left(z_{7} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (32g) | Be II |
$\mathbf{B_{60}}$ | = | $\left(x_{7} - z_{7}\right) \, \mathbf{a}_{1}- \left(y_{7} + z_{7}\right) \, \mathbf{a}_{2}+\left(x_{7} - y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a \left(y_{7} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{7} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- c \left(z_{7} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (32g) | Be II |
$\mathbf{B_{61}}$ | = | $- \left(y_{7} - z_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{7} - y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a \left(x_{7} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a y_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ | (32g) | Be II |
$\mathbf{B_{62}}$ | = | $\left(y_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{7} - y_{7}\right) \, \mathbf{a}_{3}$ | = | $- a x_{7} \,\mathbf{\hat{x}}+a y_{7} \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (32g) | Be II |
$\mathbf{B_{63}}$ | = | $\left(- x_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{7} - z_{7}\right) \, \mathbf{a}_{2}- \left(x_{7} + y_{7}\right) \, \mathbf{a}_{3}$ | = | $- a \left(y_{7} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{7} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (32g) | Be II |
$\mathbf{B_{64}}$ | = | $\left(x_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{7} + z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{7} + y_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a \left(y_{7} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{7} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (32g) | Be II |
$\mathbf{B_{65}}$ | = | $\left(y_{8} + z_{8}\right) \, \mathbf{a}_{1}+\left(x_{8} + z_{8}\right) \, \mathbf{a}_{2}+\left(x_{8} + y_{8}\right) \, \mathbf{a}_{3}$ | = | $a x_{8} \,\mathbf{\hat{x}}+a y_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ | (32g) | Be III |
$\mathbf{B_{66}}$ | = | $\left(- y_{8} + z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{8} - z_{8}\right) \, \mathbf{a}_{2}- \left(x_{8} + y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a x_{8} \,\mathbf{\hat{x}}- a \left(y_{8} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ | (32g) | Be III |
$\mathbf{B_{67}}$ | = | $\left(x_{8} + z_{8}\right) \, \mathbf{a}_{1}+\left(- y_{8} + z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{8} - y_{8}\right) \, \mathbf{a}_{3}$ | = | $- a \left(y_{8} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{8} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (32g) | Be III |
$\mathbf{B_{68}}$ | = | $- \left(x_{8} - z_{8}\right) \, \mathbf{a}_{1}+\left(y_{8} + z_{8}\right) \, \mathbf{a}_{2}+\left(- x_{8} + y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a \left(y_{8} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{8} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{8} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (32g) | Be III |
$\mathbf{B_{69}}$ | = | $\left(y_{8} - z_{8}\right) \, \mathbf{a}_{1}- \left(x_{8} + z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- x_{8} + y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a \left(x_{8} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+a y_{8} \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ | (32g) | Be III |
$\mathbf{B_{70}}$ | = | $- \left(y_{8} + z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{8} - z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{8} - y_{8}\right) \, \mathbf{a}_{3}$ | = | $a x_{8} \,\mathbf{\hat{x}}- a y_{8} \,\mathbf{\hat{y}}- c \left(z_{8} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (32g) | Be III |
$\mathbf{B_{71}}$ | = | $\left(x_{8} - z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{8} - z_{8}\right) \, \mathbf{a}_{2}+\left(x_{8} + y_{8}\right) \, \mathbf{a}_{3}$ | = | $a \left(y_{8} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{8} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- c \left(z_{8} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (32g) | Be III |
$\mathbf{B_{72}}$ | = | $- \left(x_{8} + z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{8} + z_{8} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{8} + y_{8} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a \left(y_{8} - \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{8} - \frac{1}{4}\right) \,\mathbf{\hat{y}}- c \left(z_{8} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (32g) | Be III |
$\mathbf{B_{73}}$ | = | $- \left(y_{8} + z_{8}\right) \, \mathbf{a}_{1}- \left(x_{8} + z_{8}\right) \, \mathbf{a}_{2}- \left(x_{8} + y_{8}\right) \, \mathbf{a}_{3}$ | = | $- a x_{8} \,\mathbf{\hat{x}}- a y_{8} \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ | (32g) | Be III |
$\mathbf{B_{74}}$ | = | $\left(y_{8} - z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(x_{8} - z_{8}\right) \, \mathbf{a}_{2}+\left(x_{8} + y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a x_{8} \,\mathbf{\hat{x}}+a \left(y_{8} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ | (32g) | Be III |
$\mathbf{B_{75}}$ | = | $- \left(x_{8} + z_{8}\right) \, \mathbf{a}_{1}+\left(y_{8} - z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{8} - y_{8}\right) \, \mathbf{a}_{3}$ | = | $a \left(y_{8} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{8} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- c \left(z_{8} - \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (32g) | Be III |
$\mathbf{B_{76}}$ | = | $\left(x_{8} - z_{8}\right) \, \mathbf{a}_{1}- \left(y_{8} + z_{8}\right) \, \mathbf{a}_{2}+\left(x_{8} - y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a \left(y_{8} - \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{8} + \frac{1}{4}\right) \,\mathbf{\hat{y}}- c \left(z_{8} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (32g) | Be III |
$\mathbf{B_{77}}$ | = | $- \left(y_{8} - z_{8}\right) \, \mathbf{a}_{1}+\left(x_{8} + z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{8} - y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a \left(x_{8} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- a y_{8} \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ | (32g) | Be III |
$\mathbf{B_{78}}$ | = | $\left(y_{8} + z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(- x_{8} + z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{8} - y_{8}\right) \, \mathbf{a}_{3}$ | = | $- a x_{8} \,\mathbf{\hat{x}}+a y_{8} \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (32g) | Be III |
$\mathbf{B_{79}}$ | = | $\left(- x_{8} + z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{8} - z_{8}\right) \, \mathbf{a}_{2}- \left(x_{8} + y_{8}\right) \, \mathbf{a}_{3}$ | = | $- a \left(y_{8} + \frac{1}{4}\right) \,\mathbf{\hat{x}}- a \left(x_{8} - \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (32g) | Be III |
$\mathbf{B_{80}}$ | = | $\left(x_{8} + z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{8} + z_{8} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(x_{8} + y_{8} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $a \left(y_{8} + \frac{1}{4}\right) \,\mathbf{\hat{x}}+a \left(x_{8} + \frac{1}{4}\right) \,\mathbf{\hat{y}}+c \left(z_{8} + \frac{1}{4}\right) \,\mathbf{\hat{z}}$ | (32g) | Be III |