AFLOW Prototype: AB3_mC16_12_g_ij-001
This structure originally had the label AB3_mC16_12_g_ij. Calls to that address will be redirected here.
If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)
Links to this page
https://aflow.org/p/2SQ0
or
https://aflow.org/p/AB3_mC16_12_g_ij-001
or
PDF Version
Prototype | AlCl$_{3}$ |
AFLOW prototype label | AB3_mC16_12_g_ij-001 |
ICSD | 39566 |
Pearson symbol | mC16 |
Space group number | 12 |
Space group symbol | $C2/m$ |
AFLOW prototype command |
aflow --proto=AB3_mC16_12_g_ij-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak \beta, \allowbreak y_{1}, \allowbreak x_{2}, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak y_{3}, \allowbreak z_{3}$ |
DyCl$_{3}$, ErCl$_{3}$, HoCl$_{3}$, InCl$_{3}$, LuCl$_{3}$, $\alpha$-RuCl$_{3}$, TlCl$_{3}$, TmCl$_{3}$, YbCl3
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $- y_{1} \, \mathbf{a}_{1}+y_{1} \, \mathbf{a}_{2}$ | = | $b y_{1} \,\mathbf{\hat{y}}$ | (4g) | Al I |
$\mathbf{B_{2}}$ | = | $y_{1} \, \mathbf{a}_{1}- y_{1} \, \mathbf{a}_{2}$ | = | $- b y_{1} \,\mathbf{\hat{y}}$ | (4g) | Al I |
$\mathbf{B_{3}}$ | = | $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+z_{2} \, \mathbf{a}_{3}$ | = | $\left(a x_{2} + c z_{2} \cos{\beta}\right) \,\mathbf{\hat{x}}+c z_{2} \sin{\beta} \,\mathbf{\hat{z}}$ | (4i) | Cl I |
$\mathbf{B_{4}}$ | = | $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}- z_{2} \, \mathbf{a}_{3}$ | = | $- \left(a x_{2} + c z_{2} \cos{\beta}\right) \,\mathbf{\hat{x}}- c z_{2} \sin{\beta} \,\mathbf{\hat{z}}$ | (4i) | Cl I |
$\mathbf{B_{5}}$ | = | $\left(x_{3} - y_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} + y_{3}\right) \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ | = | $\left(a x_{3} + c z_{3} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{3} \,\mathbf{\hat{y}}+c z_{3} \sin{\beta} \,\mathbf{\hat{z}}$ | (8j) | Cl II |
$\mathbf{B_{6}}$ | = | $- \left(x_{3} + y_{3}\right) \, \mathbf{a}_{1}- \left(x_{3} - y_{3}\right) \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ | = | $- \left(a x_{3} + c z_{3} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{3} \,\mathbf{\hat{y}}- c z_{3} \sin{\beta} \,\mathbf{\hat{z}}$ | (8j) | Cl II |
$\mathbf{B_{7}}$ | = | $- \left(x_{3} - y_{3}\right) \, \mathbf{a}_{1}- \left(x_{3} + y_{3}\right) \, \mathbf{a}_{2}- z_{3} \, \mathbf{a}_{3}$ | = | $- \left(a x_{3} + c z_{3} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{3} \,\mathbf{\hat{y}}- c z_{3} \sin{\beta} \,\mathbf{\hat{z}}$ | (8j) | Cl II |
$\mathbf{B_{8}}$ | = | $\left(x_{3} + y_{3}\right) \, \mathbf{a}_{1}+\left(x_{3} - y_{3}\right) \, \mathbf{a}_{2}+z_{3} \, \mathbf{a}_{3}$ | = | $\left(a x_{3} + c z_{3} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{3} \,\mathbf{\hat{y}}+c z_{3} \sin{\beta} \,\mathbf{\hat{z}}$ | (8j) | Cl II |