Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A2B4C8D_oC30_65_h_2g_3gh_c-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/2EBJ
or https://aflow.org/p/A2B4C8D_oC30_65_h_2g_3gh_c-001
or PDF Version

124 Superconductor (YBa$_{2}$Cu$_{4}$O$_{8}$) Structure: A2B4C8D_oC30_65_h_2g_3gh_c-001

Picture of Structure; Click for Big Picture
Prototype Ba$_{2}$Cu$_{4}$O$_{8}$Y
AFLOW prototype label A2B4C8D_oC30_65_h_2g_3gh_c-001
ICSD none
Pearson symbol oC30
Space group number 65
Space group symbol $Cmmm$
AFLOW prototype command aflow --proto=A2B4C8D_oC30_65_h_2g_3gh_c-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak x_{5}, \allowbreak x_{6}, \allowbreak x_{7}, \allowbreak x_{8}$

  • Unlike most BCO-type superconductors, the stoichiometry of YBa$_{2}$Cu$_{4}$O$_{8}$ is fixed.
  • We use the ambient pressure data from (Bordet, 1989) taken at room temperature.
  • Although it is never explicitly stated by (Bordet, 1989), (Nelmes, 1990) notes that this data is given in the $Ammm$ setting of space group #65, making the long axis in the $z$-direction. The standard orientation is $Cmmm$, and we use FINDSYM to rotate the structure, putting the long axis in the $x$-direction.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (2c) Y I
$\mathbf{B_{2}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}$ = $a x_{2} \,\mathbf{\hat{x}}$ (4g) Cu I
$\mathbf{B_{3}}$ = $- x_{2} \, \mathbf{a}_{1}- x_{2} \, \mathbf{a}_{2}$ = $- a x_{2} \,\mathbf{\hat{x}}$ (4g) Cu I
$\mathbf{B_{4}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}$ = $a x_{3} \,\mathbf{\hat{x}}$ (4g) Cu II
$\mathbf{B_{5}}$ = $- x_{3} \, \mathbf{a}_{1}- x_{3} \, \mathbf{a}_{2}$ = $- a x_{3} \,\mathbf{\hat{x}}$ (4g) Cu II
$\mathbf{B_{6}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}$ = $a x_{4} \,\mathbf{\hat{x}}$ (4g) O I
$\mathbf{B_{7}}$ = $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}$ = $- a x_{4} \,\mathbf{\hat{x}}$ (4g) O I
$\mathbf{B_{8}}$ = $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}$ = $a x_{5} \,\mathbf{\hat{x}}$ (4g) O II
$\mathbf{B_{9}}$ = $- x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}$ = $- a x_{5} \,\mathbf{\hat{x}}$ (4g) O II
$\mathbf{B_{10}}$ = $x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}$ = $a x_{6} \,\mathbf{\hat{x}}$ (4g) O III
$\mathbf{B_{11}}$ = $- x_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}$ = $- a x_{6} \,\mathbf{\hat{x}}$ (4g) O III
$\mathbf{B_{12}}$ = $x_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4h) Ba I
$\mathbf{B_{13}}$ = $- x_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a x_{7} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4h) Ba I
$\mathbf{B_{14}}$ = $x_{8} \, \mathbf{a}_{1}+x_{8} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4h) O IV
$\mathbf{B_{15}}$ = $- x_{8} \, \mathbf{a}_{1}- x_{8} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (4h) O IV

References

  • P. Bordet, J. L. Hodeau, R. Argoud, J. Muller, M. Marezio, , J. C. Martinez, J. J. Prejean, J. Karpinski, E. Kaldis, S. Rusiecki, and B. Bucher, Single crystal study of the 80K superconductor YBa$_{2}$Cu$_{4}$O$_{8}$}, Prog. Solid State Chem. \textbf{162-164, 524–525 (1989), doi:10.1016/0921-4534(89)91137-4.

Found in

  • R. J. Nelmes, J. S. Loveday, E. Kaldis, and J. Karpinski, The crystal structure of YBa$_{2}$Cu$_{4}$O$_{8}$ as a function of pressure up to 5 GPa, Prog. Solid State Chem. 172, 311–324 (1990), doi:10.1016/0921-4534(90)90622-L.

Prototype Generator

aflow --proto=A2B4C8D_oC30_65_h_2g_3gh_c --params=$a,b/a,c/a,x_{2},x_{3},x_{4},x_{5},x_{6},x_{7},x_{8}$

Species:

Running:

Output: