Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A3B2C5_mC40_15_ef_f_3ef-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/1Q2N
or https://aflow.org/p/A3B2C5_mC40_15_ef_f_3ef-001
or PDF Version

Lu$_{2}$Co$_{3}$Si$_{5}$ Structure: A3B2C5_mC40_15_ef_f_3ef-001

Picture of Structure; Click for Big Picture
Prototype Co$_{3}$Lu$_{2}$Si$_{5}$
AFLOW prototype label A3B2C5_mC40_15_ef_f_3ef-001
ICSD 76349
Pearson symbol mC40
Space group number 15
Space group symbol $C2/c$
AFLOW prototype command aflow --proto=A3B2C5_mC40_15_ef_f_3ef-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak \beta, \allowbreak y_{1}, \allowbreak y_{2}, \allowbreak y_{3}, \allowbreak y_{4}, \allowbreak x_{5}, \allowbreak y_{5}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak y_{6}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak y_{7}, \allowbreak z_{7}$

Other compounds with this structure

Dy$_{2}$Co$_{3}$Si$_{5}$,  Sc$_{2}$Co$_{3}$Si$_{5}$,  Y$_{2}$Co$_{3}$Si$_{5}$



\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \cos{\beta} \,\mathbf{\hat{x}}+c \sin{\beta} \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $- y_{1} \, \mathbf{a}_{1}+y_{1} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}c \cos{\beta} \,\mathbf{\hat{x}}+b y_{1} \,\mathbf{\hat{y}}+\frac{1}{4}c \sin{\beta} \,\mathbf{\hat{z}}$ (4e) Co I
$\mathbf{B_{2}}$ = $y_{1} \, \mathbf{a}_{1}- y_{1} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}c \cos{\beta} \,\mathbf{\hat{x}}- b y_{1} \,\mathbf{\hat{y}}+\frac{3}{4}c \sin{\beta} \,\mathbf{\hat{z}}$ (4e) Co I
$\mathbf{B_{3}}$ = $- y_{2} \, \mathbf{a}_{1}+y_{2} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}c \cos{\beta} \,\mathbf{\hat{x}}+b y_{2} \,\mathbf{\hat{y}}+\frac{1}{4}c \sin{\beta} \,\mathbf{\hat{z}}$ (4e) Si I
$\mathbf{B_{4}}$ = $y_{2} \, \mathbf{a}_{1}- y_{2} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}c \cos{\beta} \,\mathbf{\hat{x}}- b y_{2} \,\mathbf{\hat{y}}+\frac{3}{4}c \sin{\beta} \,\mathbf{\hat{z}}$ (4e) Si I
$\mathbf{B_{5}}$ = $- y_{3} \, \mathbf{a}_{1}+y_{3} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}c \cos{\beta} \,\mathbf{\hat{x}}+b y_{3} \,\mathbf{\hat{y}}+\frac{1}{4}c \sin{\beta} \,\mathbf{\hat{z}}$ (4e) Si II
$\mathbf{B_{6}}$ = $y_{3} \, \mathbf{a}_{1}- y_{3} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}c \cos{\beta} \,\mathbf{\hat{x}}- b y_{3} \,\mathbf{\hat{y}}+\frac{3}{4}c \sin{\beta} \,\mathbf{\hat{z}}$ (4e) Si II
$\mathbf{B_{7}}$ = $- y_{4} \, \mathbf{a}_{1}+y_{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}c \cos{\beta} \,\mathbf{\hat{x}}+b y_{4} \,\mathbf{\hat{y}}+\frac{1}{4}c \sin{\beta} \,\mathbf{\hat{z}}$ (4e) Si III
$\mathbf{B_{8}}$ = $y_{4} \, \mathbf{a}_{1}- y_{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}c \cos{\beta} \,\mathbf{\hat{x}}- b y_{4} \,\mathbf{\hat{y}}+\frac{3}{4}c \sin{\beta} \,\mathbf{\hat{z}}$ (4e) Si III
$\mathbf{B_{9}}$ = $\left(x_{5} - y_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} + y_{5}\right) \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $\left(a x_{5} + c z_{5} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{5} \,\mathbf{\hat{y}}+c z_{5} \sin{\beta} \,\mathbf{\hat{z}}$ (8f) Co II
$\mathbf{B_{10}}$ = $- \left(x_{5} + y_{5}\right) \, \mathbf{a}_{1}- \left(x_{5} - y_{5}\right) \, \mathbf{a}_{2}- \left(z_{5} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{5} + c \left(z_{5} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{5} \,\mathbf{\hat{y}}- c \left(z_{5} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (8f) Co II
$\mathbf{B_{11}}$ = $- \left(x_{5} - y_{5}\right) \, \mathbf{a}_{1}- \left(x_{5} + y_{5}\right) \, \mathbf{a}_{2}- z_{5} \, \mathbf{a}_{3}$ = $- \left(a x_{5} + c z_{5} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{5} \,\mathbf{\hat{y}}- c z_{5} \sin{\beta} \,\mathbf{\hat{z}}$ (8f) Co II
$\mathbf{B_{12}}$ = $\left(x_{5} + y_{5}\right) \, \mathbf{a}_{1}+\left(x_{5} - y_{5}\right) \, \mathbf{a}_{2}+\left(z_{5} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{5} + c \left(z_{5} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{5} \,\mathbf{\hat{y}}+c \left(z_{5} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (8f) Co II
$\mathbf{B_{13}}$ = $\left(x_{6} - y_{6}\right) \, \mathbf{a}_{1}+\left(x_{6} + y_{6}\right) \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $\left(a x_{6} + c z_{6} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{6} \,\mathbf{\hat{y}}+c z_{6} \sin{\beta} \,\mathbf{\hat{z}}$ (8f) Lu I
$\mathbf{B_{14}}$ = $- \left(x_{6} + y_{6}\right) \, \mathbf{a}_{1}- \left(x_{6} - y_{6}\right) \, \mathbf{a}_{2}- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{6} + c \left(z_{6} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{6} \,\mathbf{\hat{y}}- c \left(z_{6} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (8f) Lu I
$\mathbf{B_{15}}$ = $- \left(x_{6} - y_{6}\right) \, \mathbf{a}_{1}- \left(x_{6} + y_{6}\right) \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $- \left(a x_{6} + c z_{6} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{6} \,\mathbf{\hat{y}}- c z_{6} \sin{\beta} \,\mathbf{\hat{z}}$ (8f) Lu I
$\mathbf{B_{16}}$ = $\left(x_{6} + y_{6}\right) \, \mathbf{a}_{1}+\left(x_{6} - y_{6}\right) \, \mathbf{a}_{2}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{6} + c \left(z_{6} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{6} \,\mathbf{\hat{y}}+c \left(z_{6} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (8f) Lu I
$\mathbf{B_{17}}$ = $\left(x_{7} - y_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} + y_{7}\right) \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $\left(a x_{7} + c z_{7} \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{7} \,\mathbf{\hat{y}}+c z_{7} \sin{\beta} \,\mathbf{\hat{z}}$ (8f) Si IV
$\mathbf{B_{18}}$ = $- \left(x_{7} + y_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} - y_{7}\right) \, \mathbf{a}_{2}- \left(z_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- \left(a x_{7} + c \left(z_{7} - \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}+b y_{7} \,\mathbf{\hat{y}}- c \left(z_{7} - \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (8f) Si IV
$\mathbf{B_{19}}$ = $- \left(x_{7} - y_{7}\right) \, \mathbf{a}_{1}- \left(x_{7} + y_{7}\right) \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $- \left(a x_{7} + c z_{7} \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{7} \,\mathbf{\hat{y}}- c z_{7} \sin{\beta} \,\mathbf{\hat{z}}$ (8f) Si IV
$\mathbf{B_{20}}$ = $\left(x_{7} + y_{7}\right) \, \mathbf{a}_{1}+\left(x_{7} - y_{7}\right) \, \mathbf{a}_{2}+\left(z_{7} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\left(a x_{7} + c \left(z_{7} + \frac{1}{2}\right) \cos{\beta}\right) \,\mathbf{\hat{x}}- b y_{7} \,\mathbf{\hat{y}}+c \left(z_{7} + \frac{1}{2}\right) \sin{\beta} \,\mathbf{\hat{z}}$ (8f) Si IV

References

  • B. Chabot and E. Parthé, Dy$_{2}$Co$_{3}$Si$_{5}$, Lu$_{2}$Co$_{3}$Si$_{5}$, Y$_{2}$Co$_{3}$Si$_{5}$ and Sc$_{2}$Co$_{3}$Si$_{5}$, with a Monoclinic Structural Deformation Variant of the Orthorhombic U$_{2}$Co$_{3}$Si$_{5}$ Structure Type, J. Less-Common Met. 106, 53–59 (1985), doi:10.1016/0022-5088(85)90365-0.

Prototype Generator

aflow --proto=A3B2C5_mC40_15_ef_f_3ef --params=$a,b/a,c/a,\beta,y_{1},y_{2},y_{3},y_{4},x_{5},y_{5},z_{5},x_{6},y_{6},z_{6},x_{7},y_{7},z_{7}$

Species:

Running:

Output: