Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: ABC2D2E_hP21_164_bd_e_i_i_ac-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/1PRT
or https://aflow.org/p/ABC2D2E_hP21_164_bd_e_i_i_ac-001
or PDF Version

YCu$_{3}$(OH)$_{6}$Cl$_{3}$ Structure: ABC2D2E_hP21_164_bd_e_i_i_ac-001

Picture of Structure; Click for Big Picture
Prototype Cl$_{3}$Cu$_{3}$H$_{6}$O$_{6}$Y
AFLOW prototype label ABC2D2E_hP21_164_bd_e_i_i_ac-001
ICSD 32385
Pearson symbol hP21
Space group number 164
Space group symbol $P\overline{3}m1$
AFLOW prototype command aflow --proto=ABC2D2E_hP21_164_bd_e_i_i_ac-001
--params=$a, \allowbreak c/a, \allowbreak z_{3}, \allowbreak z_{4}, \allowbreak x_{6}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak z_{7}$

  • The Y-I (1b) site is occupied 95% of the time, with the other 5% of the yttrium atoms distributed on the Y-II (2c) sites. Thus only one of the triplet of yttrium atoms in the picture will be occupied at any one time, and most of the time it will be the central atom.
  • (Zorko, 2019) give positions for the oxygen atoms which are not consistent with the (6i) Wyckoff positions. As the difference is slight, we assume that the $x$ and $z$ coordinates are correct and generate the $y$ coordinate from the symmetry operations for the (6i) positions.
  • The ICSD entry for this paper instead tries to solve the problem by placing the oxygen atoms on a half-filled (12j) site.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (1a) Y I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}c \,\mathbf{\hat{z}}$ (1b) Cl I
$\mathbf{B_{3}}$ = $z_{3} \, \mathbf{a}_{3}$ = $c z_{3} \,\mathbf{\hat{z}}$ (2c) Y II
$\mathbf{B_{4}}$ = $- z_{3} \, \mathbf{a}_{3}$ = $- c z_{3} \,\mathbf{\hat{z}}$ (2c) Y II
$\mathbf{B_{5}}$ = $\frac{1}{3} \, \mathbf{a}_{1}+\frac{2}{3} \, \mathbf{a}_{2}+z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+c z_{4} \,\mathbf{\hat{z}}$ (2d) Cl II
$\mathbf{B_{6}}$ = $\frac{2}{3} \, \mathbf{a}_{1}+\frac{1}{3} \, \mathbf{a}_{2}- z_{4} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}- c z_{4} \,\mathbf{\hat{z}}$ (2d) Cl II
$\mathbf{B_{7}}$ = $\frac{1}{2} \, \mathbf{a}_{1}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}$ (3e) Cu I
$\mathbf{B_{8}}$ = $\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{4}a \,\mathbf{\hat{y}}$ (3e) Cu I
$\mathbf{B_{9}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}$ (3e) Cu I
$\mathbf{B_{10}}$ = $x_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $- \sqrt{3}a x_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (6i) H I
$\mathbf{B_{11}}$ = $x_{6} \, \mathbf{a}_{1}+2 x_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{6} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (6i) H I
$\mathbf{B_{12}}$ = $- 2 x_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{6} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{6} \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (6i) H I
$\mathbf{B_{13}}$ = $- x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $\sqrt{3}a x_{6} \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ (6i) H I
$\mathbf{B_{14}}$ = $2 x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{6} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{6} \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ (6i) H I
$\mathbf{B_{15}}$ = $- x_{6} \, \mathbf{a}_{1}- 2 x_{6} \, \mathbf{a}_{2}- z_{6} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{6} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{6} \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ (6i) H I
$\mathbf{B_{16}}$ = $x_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $- \sqrt{3}a x_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (6i) O I
$\mathbf{B_{17}}$ = $x_{7} \, \mathbf{a}_{1}+2 x_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{7} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (6i) O I
$\mathbf{B_{18}}$ = $- 2 x_{7} \, \mathbf{a}_{1}- x_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{7} \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{2}a x_{7} \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (6i) O I
$\mathbf{B_{19}}$ = $- x_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $\sqrt{3}a x_{7} \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ (6i) O I
$\mathbf{B_{20}}$ = $2 x_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $\frac{3}{2}a x_{7} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{7} \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ (6i) O I
$\mathbf{B_{21}}$ = $- x_{7} \, \mathbf{a}_{1}- 2 x_{7} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $- \frac{3}{2}a x_{7} \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{2}a x_{7} \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ (6i) O I

References

  • A. Zorko, M. Pregelj, M. Gomilšek, M. Klanjšek, O. Zaharko, W. Sun, and J.-X. Mi, Negative-vector-chirality 120$^\circ$ spin structure in the defect- and distortion-free quantum kagome antiferromagnet YCu$_{3}$(OH)$_{6}$Cl$_{3}$, Phys. Rev. B 100, 144420 (2019), doi:10.1103/PhysRevB.100.144420.

Prototype Generator

aflow --proto=ABC2D2E_hP21_164_bd_e_i_i_ac --params=$a,c/a,z_{3},z_{4},x_{6},z_{6},x_{7},z_{7}$

Species:

Running:

Output: