Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A4B2C2D4E_tI26_139_2e_e_d_g_a-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/YU5Q
or https://aflow.org/p/A4B2C2D4E_tI26_139_2e_e_d_g_a-001
or PDF Version

KCa$_{2}$Fe$_{4}$As$_{4}$F$_{2}$ Structure (12442-type superconductor): A4B2C2D4E_tI26_139_2e_e_d_g_a-001

Picture of Structure; Click for Big Picture
Prototype As$_{4}$Ca$_{2}$F$_{2}$Fe$_{4}$K
AFLOW prototype label A4B2C2D4E_tI26_139_2e_e_d_g_a-001
ICSD 239952
Pearson symbol tI26
Space group number 139
Space group symbol $I4/mmm$
AFLOW prototype command aflow --proto=A4B2C2D4E_tI26_139_2e_e_d_g_a-001
--params=$a, \allowbreak c/a, \allowbreak z_{3}, \allowbreak z_{4}, \allowbreak z_{5}, \allowbreak z_{6}$

Other compounds with this structure

CsCa$_{2}$Fe$_{4}$As$_{4}$F$_{2}$,  CsCa$_{2}$Fe$_{4}$As$_{4}$O$_{2}$,  CsDy$_{2}$Fe$_{4}$As$_{4}$F$_{2}$,  CsDy$_{2}$Fe$_{4}$As$_{4}$O$_{2}$,  CsGd$_{2}$Fe$_{4}$As$_{4}$F$_{2}$,  CsGd$_{2}$Fe$_{4}$As$_{4}$O$_{2}$,  CsHo$_{2}$Fe$_{4}$As$_{4}$F$_{2}$,  CsHo$_{2}$Fe$_{4}$As$_{4}$O$_{2}$,  CsNd$_{2}$Fe$_{4}$As$_{4}$F$_{2}$,  CsNd$_{2}$Fe$_{4}$As$_{4}$O$_{2}$,  CsSm$_{2}$Fe$_{4}$As$_{4}$F$_{2}$,  CsSm$_{2}$Fe$_{4}$As$_{4}$O$_{2}$,  CsTb$_{2}$Fe$_{4}$As$_{4}$F$_{2}$,  CsTb$_{2}$Fe$_{4}$As$_{4}$O$_{2}$,  KCa$_{2}$Fe$_{4}$As$_{4}$O$_{2}$,  KDy$_{2}$Fe$_{4}$As$_{4}$F$_{2}$,  KDy$_{2}$Fe$_{4}$As$_{4}$O$_{2}$,  KGd$_{2}$Fe$_{4}$As$_{4}$F$_{2}$,  KGd$_{2}$Fe$_{4}$As$_{4}$O$_{2}$,  KHo$_{2}$Fe$_{4}$As$_{4}$F$_{2}$,  KHo$_{2}$Fe$_{4}$As$_{4}$O$_{2}$,  KNd$_{2}$Fe$_{4}$As$_{4}$F$_{2}$,  KNd$_{2}$Fe$_{4}$As$_{4}$O$_{2}$,  KSm$_{2}$Fe$_{4}$As$_{4}$F$_{2}$,  KSm$_{2}$Fe$_{4}$As$_{4}$O$_{2}$,  KTb$_{2}$Fe$_{4}$As$_{4}$F$_{2}$,  KTb$_{2}$Fe$_{4}$As$_{4}$O$_{2}$,  RbCa$_{2}$Fe$_{4}$As$_{4}$F$_{2}$,  RbCa$_{2}$Fe$_{4}$As$_{4}$O$_{2}$,  RbDy$_{2}$Fe$_{4}$As$_{4}$F$_{2}$,  RbDy$_{2}$Fe$_{4}$As$_{4}$O$_{2}$,  RbGd$_{2}$Fe$_{4}$As$_{4}$F$_{2}$,  RbGd$_{2}$Fe$_{4}$As$_{4}$O$_{2}$,  RbHo$_{2}$Fe$_{4}$As$_{4}$F$_{2}$,  RbHo$_{2}$Fe$_{4}$As$_{4}$O$_{2}$,  RbNd$_{2}$Fe$_{4}$As$_{4}$F$_{2}$,  RbNd$_{2}$Fe$_{4}$As$_{4}$O$_{2}$,  RbSm$_{2}$Fe$_{4}$As$_{4}$F$_{2}$,  RbSm$_{2}$Fe$_{4}$As$_{4}$O$_{2}$,  RbTb$_{2}$Fe$_{4}$As$_{4}$F$_{2}$,  RbTb$_{2}$Fe$_{4}$As$_{4}$O$_{2}$


  • KCa$_{2}$Fe$_{4}$As$_{4}$F$_{2}$ is superconducting below 33K.
  • The Wyckoff coordinates in Table I of (Wang, 2016) do not agree with the coordinates in the CIF in their supplementary material. The positions in the CIF agree with the positions shown in their Figure 1, so we use the CIF to generate the coordinates.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (2a) K I
$\mathbf{B_{2}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (4d) F I
$\mathbf{B_{3}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (4d) F I
$\mathbf{B_{4}}$ = $z_{3} \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{2}$ = $c z_{3} \,\mathbf{\hat{z}}$ (4e) As I
$\mathbf{B_{5}}$ = $- z_{3} \, \mathbf{a}_{1}- z_{3} \, \mathbf{a}_{2}$ = $- c z_{3} \,\mathbf{\hat{z}}$ (4e) As I
$\mathbf{B_{6}}$ = $z_{4} \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}$ = $c z_{4} \,\mathbf{\hat{z}}$ (4e) As II
$\mathbf{B_{7}}$ = $- z_{4} \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{2}$ = $- c z_{4} \,\mathbf{\hat{z}}$ (4e) As II
$\mathbf{B_{8}}$ = $z_{5} \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}$ = $c z_{5} \,\mathbf{\hat{z}}$ (4e) Ca I
$\mathbf{B_{9}}$ = $- z_{5} \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}$ = $- c z_{5} \,\mathbf{\hat{z}}$ (4e) Ca I
$\mathbf{B_{10}}$ = $\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{6} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ (8g) Fe I
$\mathbf{B_{11}}$ = $z_{6} \, \mathbf{a}_{1}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+c z_{6} \,\mathbf{\hat{z}}$ (8g) Fe I
$\mathbf{B_{12}}$ = $- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{6} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ (8g) Fe I
$\mathbf{B_{13}}$ = $- z_{6} \, \mathbf{a}_{1}- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- c z_{6} \,\mathbf{\hat{z}}$ (8g) Fe I

References

  • Z.-C. Wang, C.-Y. He, S.-Q. Wu, Z.-T. Tang, Y. Liu, A. Ablimit, C.-M. Feng, and G.-H. Cao, Superconductivity in KCa$_{2}$Fe$_{4}$As$_{4}$F$_{2}$ with Separate Double Fe$_{2}$As$_{2}$ Layers, J. Am. Chem. Soc. 138, 7856–7859 (2016), doi:10.1021/jacs.6b04538.

Found in

  • Z.-C. Wang, C.-Y. He, S.-Q. Wu, Z.-T. Tang, Y. Liu, and G.-H. Cao, Synthesis, Crystal Structure and Superconductivity in RbLn$_{2}$Fe$_{4}$As$_{4}$O$_{2}$ (Ln = Sm, Tb, Dy, and Ho), Chem. Mater. 29, 1805–1812 (2017), doi:10.1021/acs.chemmater.6b05458.

Prototype Generator

aflow --proto=A4B2C2D4E_tI26_139_2e_e_d_g_a --params=$a,c/a,z_{3},z_{4},z_{5},z_{6}$

Species:

Running:

Output: