AFLOW Prototype: A4B2C2D4E_tI26_139_2e_e_d_g_a-001
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/YU5Q
or
https://aflow.org/p/A4B2C2D4E_tI26_139_2e_e_d_g_a-001
or
PDF Version
Prototype | As$_{4}$Ca$_{2}$F$_{2}$Fe$_{4}$K |
AFLOW prototype label | A4B2C2D4E_tI26_139_2e_e_d_g_a-001 |
ICSD | 239952 |
Pearson symbol | tI26 |
Space group number | 139 |
Space group symbol | $I4/mmm$ |
AFLOW prototype command |
aflow --proto=A4B2C2D4E_tI26_139_2e_e_d_g_a-001
--params=$a, \allowbreak c/a, \allowbreak z_{3}, \allowbreak z_{4}, \allowbreak z_{5}, \allowbreak z_{6}$ |
CsCa$_{2}$Fe$_{4}$As$_{4}$F$_{2}$, CsCa$_{2}$Fe$_{4}$As$_{4}$O$_{2}$, CsDy$_{2}$Fe$_{4}$As$_{4}$F$_{2}$, CsDy$_{2}$Fe$_{4}$As$_{4}$O$_{2}$, CsGd$_{2}$Fe$_{4}$As$_{4}$F$_{2}$, CsGd$_{2}$Fe$_{4}$As$_{4}$O$_{2}$, CsHo$_{2}$Fe$_{4}$As$_{4}$F$_{2}$, CsHo$_{2}$Fe$_{4}$As$_{4}$O$_{2}$, CsNd$_{2}$Fe$_{4}$As$_{4}$F$_{2}$, CsNd$_{2}$Fe$_{4}$As$_{4}$O$_{2}$, CsSm$_{2}$Fe$_{4}$As$_{4}$F$_{2}$, CsSm$_{2}$Fe$_{4}$As$_{4}$O$_{2}$, CsTb$_{2}$Fe$_{4}$As$_{4}$F$_{2}$, CsTb$_{2}$Fe$_{4}$As$_{4}$O$_{2}$, KCa$_{2}$Fe$_{4}$As$_{4}$O$_{2}$, KDy$_{2}$Fe$_{4}$As$_{4}$F$_{2}$, KDy$_{2}$Fe$_{4}$As$_{4}$O$_{2}$, KGd$_{2}$Fe$_{4}$As$_{4}$F$_{2}$, KGd$_{2}$Fe$_{4}$As$_{4}$O$_{2}$, KHo$_{2}$Fe$_{4}$As$_{4}$F$_{2}$, KHo$_{2}$Fe$_{4}$As$_{4}$O$_{2}$, KNd$_{2}$Fe$_{4}$As$_{4}$F$_{2}$, KNd$_{2}$Fe$_{4}$As$_{4}$O$_{2}$, KSm$_{2}$Fe$_{4}$As$_{4}$F$_{2}$, KSm$_{2}$Fe$_{4}$As$_{4}$O$_{2}$, KTb$_{2}$Fe$_{4}$As$_{4}$F$_{2}$, KTb$_{2}$Fe$_{4}$As$_{4}$O$_{2}$, RbCa$_{2}$Fe$_{4}$As$_{4}$F$_{2}$, RbCa$_{2}$Fe$_{4}$As$_{4}$O$_{2}$, RbDy$_{2}$Fe$_{4}$As$_{4}$F$_{2}$, RbDy$_{2}$Fe$_{4}$As$_{4}$O$_{2}$, RbGd$_{2}$Fe$_{4}$As$_{4}$F$_{2}$, RbGd$_{2}$Fe$_{4}$As$_{4}$O$_{2}$, RbHo$_{2}$Fe$_{4}$As$_{4}$F$_{2}$, RbHo$_{2}$Fe$_{4}$As$_{4}$O$_{2}$, RbNd$_{2}$Fe$_{4}$As$_{4}$F$_{2}$, RbNd$_{2}$Fe$_{4}$As$_{4}$O$_{2}$, RbSm$_{2}$Fe$_{4}$As$_{4}$F$_{2}$, RbSm$_{2}$Fe$_{4}$As$_{4}$O$_{2}$, RbTb$_{2}$Fe$_{4}$As$_{4}$F$_{2}$, RbTb$_{2}$Fe$_{4}$As$_{4}$O$_{2}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (2a) | K I |
$\mathbf{B_{2}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (4d) | F I |
$\mathbf{B_{3}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ | (4d) | F I |
$\mathbf{B_{4}}$ | = | $z_{3} \, \mathbf{a}_{1}+z_{3} \, \mathbf{a}_{2}$ | = | $c z_{3} \,\mathbf{\hat{z}}$ | (4e) | As I |
$\mathbf{B_{5}}$ | = | $- z_{3} \, \mathbf{a}_{1}- z_{3} \, \mathbf{a}_{2}$ | = | $- c z_{3} \,\mathbf{\hat{z}}$ | (4e) | As I |
$\mathbf{B_{6}}$ | = | $z_{4} \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}$ | = | $c z_{4} \,\mathbf{\hat{z}}$ | (4e) | As II |
$\mathbf{B_{7}}$ | = | $- z_{4} \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{2}$ | = | $- c z_{4} \,\mathbf{\hat{z}}$ | (4e) | As II |
$\mathbf{B_{8}}$ | = | $z_{5} \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}$ | = | $c z_{5} \,\mathbf{\hat{z}}$ | (4e) | Ca I |
$\mathbf{B_{9}}$ | = | $- z_{5} \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}$ | = | $- c z_{5} \,\mathbf{\hat{z}}$ | (4e) | Ca I |
$\mathbf{B_{10}}$ | = | $\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{6} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{6} \,\mathbf{\hat{z}}$ | (8g) | Fe I |
$\mathbf{B_{11}}$ | = | $z_{6} \, \mathbf{a}_{1}+\left(z_{6} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+c z_{6} \,\mathbf{\hat{z}}$ | (8g) | Fe I |
$\mathbf{B_{12}}$ | = | $- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{6} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}- c z_{6} \,\mathbf{\hat{z}}$ | (8g) | Fe I |
$\mathbf{B_{13}}$ | = | $- z_{6} \, \mathbf{a}_{1}- \left(z_{6} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- c z_{6} \,\mathbf{\hat{z}}$ | (8g) | Fe I |