Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB4C3_cI16_229_a_c_b-001

This structure originally had the label AB4C3_cI16_229_a_c_b. Calls to that address will be redirected here.

If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)

Links to this page

https://aflow.org/p/YRPB
or https://aflow.org/p/AB4C3_cI16_229_a_c_b-001
or PDF Version

Model of Ferrite Structure (cI16): AB4C3_cI16_229_a_c_b-001

Picture of Structure; Click for Big Picture
Prototype CrFe$_{4}$Ni$_{3}$
AFLOW prototype label AB4C3_cI16_229_a_c_b-001
ICSD none
Pearson symbol cI16
Space group number 229
Space group symbol $Im\overline{3}m$
AFLOW prototype command aflow --proto=AB4C3_cI16_229_a_c_b-001
--params=$a$

  • Ferritic steels are alloys of iron and other metals with an averaged body-centered cubic structure. This model represents one approximation for a ferritic steel. It is not meant to represent a real steel, and the selection of atom types for each Wyckoff position is arbitrary. If we replace the chromium atoms by nickel, this bcomes the CsCl ($B2$) with $a_{B2} = 1/4 \, a$. If we replace both the nickel and chromium atoms by iron, then the structure becomes a body-centered cubic lattice ($A2$) again with $a_{A2} = 1/4 \, a$.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}a \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (2a) Cr I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}$ (6b) Ni I
$\mathbf{B_{3}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}$ (6b) Ni I
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{z}}$ (6b) Ni I
$\mathbf{B_{5}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (8c) Fe I
$\mathbf{B_{6}}$ = $\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- \frac{1}{4}a \,\mathbf{\hat{z}}$ (8c) Fe I
$\mathbf{B_{7}}$ = $\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- \frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (8c) Fe I
$\mathbf{B_{8}}$ = $\frac{1}{2} \, \mathbf{a}_{1}$ = $- \frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (8c) Fe I

References

  • M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. Hart, and S. Curtarolo, The AFLOW library of crystallographic prototypes: part 1, Comput. Mater. Sci. 136, S1–S828 (2017), doi:10.1016/j.commatsci.2017.01.017.

Prototype Generator

aflow --proto=AB4C3_cI16_229_a_c_b --params=$a$

Species:

Running:

Output: