Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB4C15D4_tI48_139_a_2e_bd2e2g_2e-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/Y186
or https://aflow.org/p/AB4C15D4_tI48_139_a_2e_bd2e2g_2e-001
or PDF Version

High Temperature BaBi$_{4}$Ti$_{4}$O$_{15}$ $m = 4$ Aurivillius Structure: AB4C15D4_tI48_139_a_2e_bd2e2g_2e-001

Picture of Structure; Click for Big Picture
Prototype BaBi$_{4}$O$_{15}$Ti$_{4}$
AFLOW prototype label AB4C15D4_tI48_139_a_2e_bd2e2g_2e-001
ICSD 150929
Pearson symbol tI48
Space group number 139
Space group symbol $I4/mmm$
AFLOW prototype command aflow --proto=AB4C15D4_tI48_139_a_2e_bd2e2g_2e-001
--params=$a, \allowbreak c/a, \allowbreak z_{4}, \allowbreak z_{5}, \allowbreak z_{6}, \allowbreak z_{7}, \allowbreak z_{8}, \allowbreak z_{9}, \allowbreak z_{10}, \allowbreak z_{11}$

Other compounds with this structure

PbBi$_{4}$Ti$_{4}$O$_{15}$,  Bi$_{5}$Ti$_{3}$GaO$_{15}$


  • Aurivillius phases are layered tetragonal materials with composition (Me$'_{2}$O$_{2}$)$^{2+}$(Me$_{m-1}$R$_{m}$O$_{3m+1}$)$^{2-}$ (Me$_{m-1}$Me$'_{2}$R$_{m}$O$_{3(m+1)}$), where Me and Me' are metals and R is a transition metal with a charge of +4 or +5. (Subbaro, 1962)
  • The ICSD entry for this structure states that the actual composition of our Ba I site is Ba$_{0.26}$Bi$_{0.74}$, while the Bi II sites composition is Ba$_{0.37}$Bi$_{0.63}$. We have arbitrarily labeled the first of these sites Ba and the second Bi so that the AFLOW label mimics the composition of the structure. The original work of (Aurivillius, 1950) assumes equal mixing of barium and bismuth on all of the Ba/Bi sites.
  • Below 700K this structure transforms into the orthorhombic low temperature BaBi$_{4}$Ti$_{4}$O$_{15}$ structure. (Kennedy, 2003) Data for the illustrated structure was taken at 1000K.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- \frac{1}{2}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (2a) Ba I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{2}c \,\mathbf{\hat{z}}$ (2b) O I
$\mathbf{B_{3}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (4d) O II
$\mathbf{B_{4}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{4}c \,\mathbf{\hat{z}}$ (4d) O II
$\mathbf{B_{5}}$ = $z_{4} \, \mathbf{a}_{1}+z_{4} \, \mathbf{a}_{2}$ = $c z_{4} \,\mathbf{\hat{z}}$ (4e) Bi I
$\mathbf{B_{6}}$ = $- z_{4} \, \mathbf{a}_{1}- z_{4} \, \mathbf{a}_{2}$ = $- c z_{4} \,\mathbf{\hat{z}}$ (4e) Bi I
$\mathbf{B_{7}}$ = $z_{5} \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}$ = $c z_{5} \,\mathbf{\hat{z}}$ (4e) Bi II
$\mathbf{B_{8}}$ = $- z_{5} \, \mathbf{a}_{1}- z_{5} \, \mathbf{a}_{2}$ = $- c z_{5} \,\mathbf{\hat{z}}$ (4e) Bi II
$\mathbf{B_{9}}$ = $z_{6} \, \mathbf{a}_{1}+z_{6} \, \mathbf{a}_{2}$ = $c z_{6} \,\mathbf{\hat{z}}$ (4e) O III
$\mathbf{B_{10}}$ = $- z_{6} \, \mathbf{a}_{1}- z_{6} \, \mathbf{a}_{2}$ = $- c z_{6} \,\mathbf{\hat{z}}$ (4e) O III
$\mathbf{B_{11}}$ = $z_{7} \, \mathbf{a}_{1}+z_{7} \, \mathbf{a}_{2}$ = $c z_{7} \,\mathbf{\hat{z}}$ (4e) O IV
$\mathbf{B_{12}}$ = $- z_{7} \, \mathbf{a}_{1}- z_{7} \, \mathbf{a}_{2}$ = $- c z_{7} \,\mathbf{\hat{z}}$ (4e) O IV
$\mathbf{B_{13}}$ = $z_{8} \, \mathbf{a}_{1}+z_{8} \, \mathbf{a}_{2}$ = $c z_{8} \,\mathbf{\hat{z}}$ (4e) Ti I
$\mathbf{B_{14}}$ = $- z_{8} \, \mathbf{a}_{1}- z_{8} \, \mathbf{a}_{2}$ = $- c z_{8} \,\mathbf{\hat{z}}$ (4e) Ti I
$\mathbf{B_{15}}$ = $z_{9} \, \mathbf{a}_{1}+z_{9} \, \mathbf{a}_{2}$ = $c z_{9} \,\mathbf{\hat{z}}$ (4e) Ti II
$\mathbf{B_{16}}$ = $- z_{9} \, \mathbf{a}_{1}- z_{9} \, \mathbf{a}_{2}$ = $- c z_{9} \,\mathbf{\hat{z}}$ (4e) Ti II
$\mathbf{B_{17}}$ = $\left(z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{10} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (8g) O V
$\mathbf{B_{18}}$ = $z_{10} \, \mathbf{a}_{1}+\left(z_{10} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+c z_{10} \,\mathbf{\hat{z}}$ (8g) O V
$\mathbf{B_{19}}$ = $- \left(z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{10} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}- c z_{10} \,\mathbf{\hat{z}}$ (8g) O V
$\mathbf{B_{20}}$ = $- z_{10} \, \mathbf{a}_{1}- \left(z_{10} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- c z_{10} \,\mathbf{\hat{z}}$ (8g) O V
$\mathbf{B_{21}}$ = $\left(z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{11} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ (8g) O VI
$\mathbf{B_{22}}$ = $z_{11} \, \mathbf{a}_{1}+\left(z_{11} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+c z_{11} \,\mathbf{\hat{z}}$ (8g) O VI
$\mathbf{B_{23}}$ = $- \left(z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{11} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}- c z_{11} \,\mathbf{\hat{z}}$ (8g) O VI
$\mathbf{B_{24}}$ = $- z_{11} \, \mathbf{a}_{1}- \left(z_{11} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- c z_{11} \,\mathbf{\hat{z}}$ (8g) O VI

References

  • B. J. Kennedy, Y. Kubota, B. A. Hunter, I., and K. Kato, Structural phase transitions in the layered bismuth oxide BaBi$_{4}$Ti$_{4}$O$_{15}$, Solid State Commun. 126, 653–658 (2003), doi:10.1016/S0038-1098(03)00332-6.
  • E. C. Subbarao, A family of ferroelectric bismuth compounds, J. Phys.: Conf. Ser. 23, 665–676 (1962), doi:10.1016/0022-3697(62)90526-7.
  • B. Aurivillius, Mixed oxides with layer lattice. III. Structure of BaBi$_{4}$Ti$_{4}$O$_{15}$, Arkiv für Kemi 2, 519–527 (1950).

Prototype Generator

aflow --proto=AB4C15D4_tI48_139_a_2e_bd2e2g_2e --params=$a,c/a,z_{4},z_{5},z_{6},z_{7},z_{8},z_{9},z_{10},z_{11}$

Species:

Running:

Output: