AFLOW Prototype: A_hR6_148_f-001
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/XW0B
or
https://aflow.org/p/A_hR6_148_f-001
or
PDF Version
| Prototype | S |
| AFLOW prototype label | A_hR6_148_f-001 |
| ICSD | 27495 |
| Pearson symbol | hR6 |
| Space group number | 148 |
| Space group symbol | $R\overline{3}$ |
| AFLOW prototype command |
aflow --proto=A_hR6_148_f-001
--params=$a, \allowbreak c/a, \allowbreak x_{1}, \allowbreak y_{1}, \allowbreak z_{1}$ |
--hex. Basis vectors
| Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
|---|---|---|---|---|---|---|
| $\mathbf{B_{1}}$ | = | $x_{1} \, \mathbf{a}_{1}+y_{1} \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{1} - z_{1}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{1} - 2 y_{1} + z_{1}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{1} + y_{1} + z_{1}\right) \,\mathbf{\hat{z}}$ | (6f) | S I |
| $\mathbf{B_{2}}$ | = | $z_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}+y_{1} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(y_{1} - z_{1}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(2 x_{1} - y_{1} - z_{1}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{1} + y_{1} + z_{1}\right) \,\mathbf{\hat{z}}$ | (6f) | S I |
| $\mathbf{B_{3}}$ | = | $y_{1} \, \mathbf{a}_{1}+z_{1} \, \mathbf{a}_{2}+x_{1} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(x_{1} - y_{1}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(x_{1} + y_{1} - 2 z_{1}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(x_{1} + y_{1} + z_{1}\right) \,\mathbf{\hat{z}}$ | (6f) | S I |
| $\mathbf{B_{4}}$ | = | $- x_{1} \, \mathbf{a}_{1}- y_{1} \, \mathbf{a}_{2}- z_{1} \, \mathbf{a}_{3}$ | = | $- \frac{1}{2}a \left(x_{1} - z_{1}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{1} - 2 y_{1} + z_{1}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{1} + y_{1} + z_{1}\right) \,\mathbf{\hat{z}}$ | (6f) | S I |
| $\mathbf{B_{5}}$ | = | $- z_{1} \, \mathbf{a}_{1}- x_{1} \, \mathbf{a}_{2}- y_{1} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(y_{1} - z_{1}\right) \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \left(2 x_{1} - y_{1} - z_{1}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{1} + y_{1} + z_{1}\right) \,\mathbf{\hat{z}}$ | (6f) | S I |
| $\mathbf{B_{6}}$ | = | $- y_{1} \, \mathbf{a}_{1}- z_{1} \, \mathbf{a}_{2}- x_{1} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \left(x_{1} - y_{1}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{1} + y_{1} - 2 z_{1}\right) \,\mathbf{\hat{y}}- \frac{1}{3}c \left(x_{1} + y_{1} + z_{1}\right) \,\mathbf{\hat{z}}$ | (6f) | S I |