AFLOW Prototype: A2B_oI12_74_h_e-001
This structure originally had the label A2B_oI12_74_h_e. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M. J. Mehl, E. Gossett, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 2, Comp. Mat. Sci. 161, S1-S1011 (2019). (doi=10.1016/j.commatsci.2018.10.043)
Links to this page
https://aflow.org/p/TWQQ
or
https://aflow.org/p/A2B_oI12_74_h_e-001
or
PDF Version
Prototype | Hg$_{2}$K |
AFLOW prototype label | A2B_oI12_74_h_e-001 |
ICSD | 104303 |
Pearson symbol | oI12 |
Space group number | 74 |
Space group symbol | $Imma$ |
AFLOW prototype command |
aflow --proto=A2B_oI12_74_h_e-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak z_{1}, \allowbreak y_{2}, \allowbreak z_{2}$ |
BaZn$_{2}$, CaAg$_{2}$, SrZn$_{2}$
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $\left(z_{1} + \frac{1}{4}\right) \, \mathbf{a}_{1}+z_{1} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}b \,\mathbf{\hat{y}}+c z_{1} \,\mathbf{\hat{z}}$ | (4e) | K I |
$\mathbf{B_{2}}$ | = | $- \left(z_{1} - \frac{3}{4}\right) \, \mathbf{a}_{1}- z_{1} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $\frac{3}{4}b \,\mathbf{\hat{y}}- c z_{1} \,\mathbf{\hat{z}}$ | (4e) | K I |
$\mathbf{B_{3}}$ | = | $\left(y_{2} + z_{2}\right) \, \mathbf{a}_{1}+z_{2} \, \mathbf{a}_{2}+y_{2} \, \mathbf{a}_{3}$ | = | $b y_{2} \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ | (8h) | Hg I |
$\mathbf{B_{4}}$ | = | $\left(- y_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}+z_{2} \, \mathbf{a}_{2}- \left(y_{2} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- b \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ | (8h) | Hg I |
$\mathbf{B_{5}}$ | = | $\left(y_{2} - z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}- z_{2} \, \mathbf{a}_{2}+\left(y_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $b \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}- c z_{2} \,\mathbf{\hat{z}}$ | (8h) | Hg I |
$\mathbf{B_{6}}$ | = | $- \left(y_{2} + z_{2}\right) \, \mathbf{a}_{1}- z_{2} \, \mathbf{a}_{2}- y_{2} \, \mathbf{a}_{3}$ | = | $- b y_{2} \,\mathbf{\hat{y}}- c z_{2} \,\mathbf{\hat{z}}$ | (8h) | Hg I |