Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A5B19C2_tP26_123_a2g_ce2h3i_g-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/RR9W
or https://aflow.org/p/A5B19C2_tP26_123_a2g_ce2h3i_g-001
or PDF Version

Ce$_{5}$Pd$_{2}$In$_{19}$ Structure: A5B19C2_tP26_123_a2g_ce2h3i_g-001

Picture of Structure; Click for Big Picture
Prototype Ce$_{5}$In$_{19}$Pd$_{2}$
AFLOW prototype label A5B19C2_tP26_123_a2g_ce2h3i_g-001
ICSD 247863
Pearson symbol tP26
Space group number 123
Space group symbol $P4/mmm$
AFLOW prototype command aflow --proto=A5B19C2_tP26_123_a2g_ce2h3i_g-001
--params=$a, \allowbreak c/a, \allowbreak z_{4}, \allowbreak z_{5}, \allowbreak z_{6}, \allowbreak z_{7}, \allowbreak z_{8}, \allowbreak z_{9}, \allowbreak z_{10}, \allowbreak z_{11}$

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&a \,\mathbf{\hat{y}}\\\mathbf{a_{3}}&=&c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (1a) Ce I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}$ (1c) In I
$\mathbf{B_{3}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (2e) In II
$\mathbf{B_{4}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ (2e) In II
$\mathbf{B_{5}}$ = $z_{4} \, \mathbf{a}_{3}$ = $c z_{4} \,\mathbf{\hat{z}}$ (2g) Ce II
$\mathbf{B_{6}}$ = $- z_{4} \, \mathbf{a}_{3}$ = $- c z_{4} \,\mathbf{\hat{z}}$ (2g) Ce II
$\mathbf{B_{7}}$ = $z_{5} \, \mathbf{a}_{3}$ = $c z_{5} \,\mathbf{\hat{z}}$ (2g) Ce III
$\mathbf{B_{8}}$ = $- z_{5} \, \mathbf{a}_{3}$ = $- c z_{5} \,\mathbf{\hat{z}}$ (2g) Ce III
$\mathbf{B_{9}}$ = $z_{6} \, \mathbf{a}_{3}$ = $c z_{6} \,\mathbf{\hat{z}}$ (2g) Pd I
$\mathbf{B_{10}}$ = $- z_{6} \, \mathbf{a}_{3}$ = $- c z_{6} \,\mathbf{\hat{z}}$ (2g) Pd I
$\mathbf{B_{11}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ (2h) In III
$\mathbf{B_{12}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ (2h) In III
$\mathbf{B_{13}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ (2h) In IV
$\mathbf{B_{14}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ (2h) In IV
$\mathbf{B_{15}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ (4i) In V
$\mathbf{B_{16}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+z_{9} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+c z_{9} \,\mathbf{\hat{z}}$ (4i) In V
$\mathbf{B_{17}}$ = $\frac{1}{2} \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}- c z_{9} \,\mathbf{\hat{z}}$ (4i) In V
$\mathbf{B_{18}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- z_{9} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- c z_{9} \,\mathbf{\hat{z}}$ (4i) In V
$\mathbf{B_{19}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ (4i) In VI
$\mathbf{B_{20}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+z_{10} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+c z_{10} \,\mathbf{\hat{z}}$ (4i) In VI
$\mathbf{B_{21}}$ = $\frac{1}{2} \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}- c z_{10} \,\mathbf{\hat{z}}$ (4i) In VI
$\mathbf{B_{22}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- z_{10} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- c z_{10} \,\mathbf{\hat{z}}$ (4i) In VI
$\mathbf{B_{23}}$ = $\frac{1}{2} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ (4i) In VII
$\mathbf{B_{24}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+z_{11} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+c z_{11} \,\mathbf{\hat{z}}$ (4i) In VII
$\mathbf{B_{25}}$ = $\frac{1}{2} \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{y}}- c z_{11} \,\mathbf{\hat{z}}$ (4i) In VII
$\mathbf{B_{26}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- z_{11} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}- c z_{11} \,\mathbf{\hat{z}}$ (4i) In VII

References

  • A. Tursina, S. Nesterenko, Y. Seropegin, H. Noël, and D. Kaczorowski, Ce$_{2}$PdIn$_{8}$, Ce$_{3}$PdIn$_{11}$ and Ce$_{5}$Pd$_{2}$In$_{19}$–members of homological series based on AuCu$_{3-}$ and PtHg$_{2-}$ type structural units, J. Solid State Chem. 200, 7–12 (2013), doi:10.1016/j.jssc.2012.12.037.

Found in

  • M. Kratochvilova, M. Dusek, K. Uhlirova, A. Rudajevova, J. Prokleska, B. Vondrackova, J. Custers, and V. Sechovsky, Single crystal study of the layered heavy fermion compounds Ce$_{2}$PdIn$_{8}$, Ce$_{3}$PdIn$_{11}$, Ce$_{2}$PtIn$_{8}$ and Ce$_{3}$PtIn$_{11}$, J. Cryst. Growth 397, 47–52 (2014), doi:10.1016/j.jcrysgro.2014.04.008.

Prototype Generator

aflow --proto=A5B19C2_tP26_123_a2g_ce2h3i_g --params=$a,c/a,z_{4},z_{5},z_{6},z_{7},z_{8},z_{9},z_{10},z_{11}$

Species:

Running:

Output: