AFLOW Prototype: A5B19C2_tP26_123_a2g_ce2h3i_g-001
If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.
Links to this page
https://aflow.org/p/RR9W
or
https://aflow.org/p/A5B19C2_tP26_123_a2g_ce2h3i_g-001
or
PDF Version
Prototype | Ce$_{5}$In$_{19}$Pd$_{2}$ |
AFLOW prototype label | A5B19C2_tP26_123_a2g_ce2h3i_g-001 |
ICSD | 247863 |
Pearson symbol | tP26 |
Space group number | 123 |
Space group symbol | $P4/mmm$ |
AFLOW prototype command |
aflow --proto=A5B19C2_tP26_123_a2g_ce2h3i_g-001
--params=$a, \allowbreak c/a, \allowbreak z_{4}, \allowbreak z_{5}, \allowbreak z_{6}, \allowbreak z_{7}, \allowbreak z_{8}, \allowbreak z_{9}, \allowbreak z_{10}, \allowbreak z_{11}$ |
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (1a) | Ce I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}$ | (1c) | In I |
$\mathbf{B_{3}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (2e) | In II |
$\mathbf{B_{4}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}c \,\mathbf{\hat{z}}$ | (2e) | In II |
$\mathbf{B_{5}}$ | = | $z_{4} \, \mathbf{a}_{3}$ | = | $c z_{4} \,\mathbf{\hat{z}}$ | (2g) | Ce II |
$\mathbf{B_{6}}$ | = | $- z_{4} \, \mathbf{a}_{3}$ | = | $- c z_{4} \,\mathbf{\hat{z}}$ | (2g) | Ce II |
$\mathbf{B_{7}}$ | = | $z_{5} \, \mathbf{a}_{3}$ | = | $c z_{5} \,\mathbf{\hat{z}}$ | (2g) | Ce III |
$\mathbf{B_{8}}$ | = | $- z_{5} \, \mathbf{a}_{3}$ | = | $- c z_{5} \,\mathbf{\hat{z}}$ | (2g) | Ce III |
$\mathbf{B_{9}}$ | = | $z_{6} \, \mathbf{a}_{3}$ | = | $c z_{6} \,\mathbf{\hat{z}}$ | (2g) | Pd I |
$\mathbf{B_{10}}$ | = | $- z_{6} \, \mathbf{a}_{3}$ | = | $- c z_{6} \,\mathbf{\hat{z}}$ | (2g) | Pd I |
$\mathbf{B_{11}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{7} \,\mathbf{\hat{z}}$ | (2h) | In III |
$\mathbf{B_{12}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- z_{7} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- c z_{7} \,\mathbf{\hat{z}}$ | (2h) | In III |
$\mathbf{B_{13}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{8} \,\mathbf{\hat{z}}$ | (2h) | In IV |
$\mathbf{B_{14}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}- z_{8} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}- c z_{8} \,\mathbf{\hat{z}}$ | (2h) | In IV |
$\mathbf{B_{15}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{9} \,\mathbf{\hat{z}}$ | (4i) | In V |
$\mathbf{B_{16}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+z_{9} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+c z_{9} \,\mathbf{\hat{z}}$ | (4i) | In V |
$\mathbf{B_{17}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}- z_{9} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}- c z_{9} \,\mathbf{\hat{z}}$ | (4i) | In V |
$\mathbf{B_{18}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- z_{9} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- c z_{9} \,\mathbf{\hat{z}}$ | (4i) | In V |
$\mathbf{B_{19}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{10} \,\mathbf{\hat{z}}$ | (4i) | In VI |
$\mathbf{B_{20}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+z_{10} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+c z_{10} \,\mathbf{\hat{z}}$ | (4i) | In VI |
$\mathbf{B_{21}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}- z_{10} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}- c z_{10} \,\mathbf{\hat{z}}$ | (4i) | In VI |
$\mathbf{B_{22}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- z_{10} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- c z_{10} \,\mathbf{\hat{z}}$ | (4i) | In VI |
$\mathbf{B_{23}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}+z_{11} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}+c z_{11} \,\mathbf{\hat{z}}$ | (4i) | In VII |
$\mathbf{B_{24}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+z_{11} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+c z_{11} \,\mathbf{\hat{z}}$ | (4i) | In VII |
$\mathbf{B_{25}}$ | = | $\frac{1}{2} \, \mathbf{a}_{2}- z_{11} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{y}}- c z_{11} \,\mathbf{\hat{z}}$ | (4i) | In VII |
$\mathbf{B_{26}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}- z_{11} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}- c z_{11} \,\mathbf{\hat{z}}$ | (4i) | In VII |