AFLOW Prototype: A13BC18D20E5_cF228_216_ah_c_gh_2eh_be-001
This structure originally had the label A13BC18D20E5_cF228_216_dh_b_fh_2eh_ce. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)
Links to this page
https://aflow.org/p/R5TJ
or
https://aflow.org/p/A13BC18D20E5_cF228_216_ah_c_gh_2eh_be-001
or
PDF Version
Prototype | Al$_{13}$ClF$_{18}$O$_{20}$Si$_{5}$ |
AFLOW prototype label | A13BC18D20E5_cF228_216_ah_c_gh_2eh_be-001 |
Strukturbericht designation | $S0_{8}$ |
Mineral name | zunyite |
ICSD | 15745 |
Pearson symbol | cF228 |
Space group number | 216 |
Space group symbol | $F\overline{4}3m$ |
AFLOW prototype command |
aflow --proto=A13BC18D20E5_cF228_216_ah_c_gh_2eh_be-001
--params=$a, \allowbreak x_{4}, \allowbreak x_{5}, \allowbreak x_{6}, \allowbreak x_{7}, \allowbreak x_{8}, \allowbreak z_{8}, \allowbreak x_{9}, \allowbreak z_{9}, \allowbreak x_{10}, \allowbreak z_{10}$ |
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (4a) | Al I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ | (4b) | Si I |
$\mathbf{B_{3}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ | (4c) | Cl I |
$\mathbf{B_{4}}$ | = | $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ | = | $a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ | (16e) | O I |
$\mathbf{B_{5}}$ | = | $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}- 3 x_{4} \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ | (16e) | O I |
$\mathbf{B_{6}}$ | = | $x_{4} \, \mathbf{a}_{1}- 3 x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ | (16e) | O I |
$\mathbf{B_{7}}$ | = | $- 3 x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ | = | $a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ | (16e) | O I |
$\mathbf{B_{8}}$ | = | $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ | = | $a x_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ | (16e) | O II |
$\mathbf{B_{9}}$ | = | $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}- 3 x_{5} \, \mathbf{a}_{3}$ | = | $- a x_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ | (16e) | O II |
$\mathbf{B_{10}}$ | = | $x_{5} \, \mathbf{a}_{1}- 3 x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ | = | $- a x_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ | (16e) | O II |
$\mathbf{B_{11}}$ | = | $- 3 x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ | = | $a x_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ | (16e) | O II |
$\mathbf{B_{12}}$ | = | $x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ | = | $a x_{6} \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}+a x_{6} \,\mathbf{\hat{z}}$ | (16e) | Si II |
$\mathbf{B_{13}}$ | = | $x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}- 3 x_{6} \, \mathbf{a}_{3}$ | = | $- a x_{6} \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}+a x_{6} \,\mathbf{\hat{z}}$ | (16e) | Si II |
$\mathbf{B_{14}}$ | = | $x_{6} \, \mathbf{a}_{1}- 3 x_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ | = | $- a x_{6} \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}- a x_{6} \,\mathbf{\hat{z}}$ | (16e) | Si II |
$\mathbf{B_{15}}$ | = | $- 3 x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ | = | $a x_{6} \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}- a x_{6} \,\mathbf{\hat{z}}$ | (16e) | Si II |
$\mathbf{B_{16}}$ | = | $- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ | = | $a x_{7} \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ | (24g) | F I |
$\mathbf{B_{17}}$ | = | $x_{7} \, \mathbf{a}_{1}- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ | (24g) | F I |
$\mathbf{B_{18}}$ | = | $x_{7} \, \mathbf{a}_{1}- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ | (24g) | F I |
$\mathbf{B_{19}}$ | = | $- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ | (24g) | F I |
$\mathbf{B_{20}}$ | = | $x_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+a x_{7} \,\mathbf{\hat{z}}$ | (24g) | F I |
$\mathbf{B_{21}}$ | = | $- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ | (24g) | F I |
$\mathbf{B_{22}}$ | = | $z_{8} \, \mathbf{a}_{1}+z_{8} \, \mathbf{a}_{2}+\left(2 x_{8} - z_{8}\right) \, \mathbf{a}_{3}$ | = | $a x_{8} \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}+a z_{8} \,\mathbf{\hat{z}}$ | (48h) | Al II |
$\mathbf{B_{23}}$ | = | $z_{8} \, \mathbf{a}_{1}+z_{8} \, \mathbf{a}_{2}- \left(2 x_{8} + z_{8}\right) \, \mathbf{a}_{3}$ | = | $- a x_{8} \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}+a z_{8} \,\mathbf{\hat{z}}$ | (48h) | Al II |
$\mathbf{B_{24}}$ | = | $\left(2 x_{8} - z_{8}\right) \, \mathbf{a}_{1}- \left(2 x_{8} + z_{8}\right) \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ | = | $- a x_{8} \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}- a z_{8} \,\mathbf{\hat{z}}$ | (48h) | Al II |
$\mathbf{B_{25}}$ | = | $- \left(2 x_{8} + z_{8}\right) \, \mathbf{a}_{1}+\left(2 x_{8} - z_{8}\right) \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ | = | $a x_{8} \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}- a z_{8} \,\mathbf{\hat{z}}$ | (48h) | Al II |
$\mathbf{B_{26}}$ | = | $\left(2 x_{8} - z_{8}\right) \, \mathbf{a}_{1}+z_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ | = | $a z_{8} \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}+a x_{8} \,\mathbf{\hat{z}}$ | (48h) | Al II |
$\mathbf{B_{27}}$ | = | $- \left(2 x_{8} + z_{8}\right) \, \mathbf{a}_{1}+z_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ | = | $a z_{8} \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}- a x_{8} \,\mathbf{\hat{z}}$ | (48h) | Al II |
$\mathbf{B_{28}}$ | = | $z_{8} \, \mathbf{a}_{1}+\left(2 x_{8} - z_{8}\right) \, \mathbf{a}_{2}- \left(2 x_{8} + z_{8}\right) \, \mathbf{a}_{3}$ | = | $- a z_{8} \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}+a x_{8} \,\mathbf{\hat{z}}$ | (48h) | Al II |
$\mathbf{B_{29}}$ | = | $z_{8} \, \mathbf{a}_{1}- \left(2 x_{8} + z_{8}\right) \, \mathbf{a}_{2}+\left(2 x_{8} - z_{8}\right) \, \mathbf{a}_{3}$ | = | $- a z_{8} \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}- a x_{8} \,\mathbf{\hat{z}}$ | (48h) | Al II |
$\mathbf{B_{30}}$ | = | $z_{8} \, \mathbf{a}_{1}+\left(2 x_{8} - z_{8}\right) \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ | = | $a x_{8} \,\mathbf{\hat{x}}+a z_{8} \,\mathbf{\hat{y}}+a x_{8} \,\mathbf{\hat{z}}$ | (48h) | Al II |
$\mathbf{B_{31}}$ | = | $z_{8} \, \mathbf{a}_{1}- \left(2 x_{8} + z_{8}\right) \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ | = | $- a x_{8} \,\mathbf{\hat{x}}+a z_{8} \,\mathbf{\hat{y}}- a x_{8} \,\mathbf{\hat{z}}$ | (48h) | Al II |
$\mathbf{B_{32}}$ | = | $- \left(2 x_{8} + z_{8}\right) \, \mathbf{a}_{1}+z_{8} \, \mathbf{a}_{2}+\left(2 x_{8} - z_{8}\right) \, \mathbf{a}_{3}$ | = | $a x_{8} \,\mathbf{\hat{x}}- a z_{8} \,\mathbf{\hat{y}}- a x_{8} \,\mathbf{\hat{z}}$ | (48h) | Al II |
$\mathbf{B_{33}}$ | = | $\left(2 x_{8} - z_{8}\right) \, \mathbf{a}_{1}+z_{8} \, \mathbf{a}_{2}- \left(2 x_{8} + z_{8}\right) \, \mathbf{a}_{3}$ | = | $- a x_{8} \,\mathbf{\hat{x}}- a z_{8} \,\mathbf{\hat{y}}+a x_{8} \,\mathbf{\hat{z}}$ | (48h) | Al II |
$\mathbf{B_{34}}$ | = | $z_{9} \, \mathbf{a}_{1}+z_{9} \, \mathbf{a}_{2}+\left(2 x_{9} - z_{9}\right) \, \mathbf{a}_{3}$ | = | $a x_{9} \,\mathbf{\hat{x}}+a x_{9} \,\mathbf{\hat{y}}+a z_{9} \,\mathbf{\hat{z}}$ | (48h) | F II |
$\mathbf{B_{35}}$ | = | $z_{9} \, \mathbf{a}_{1}+z_{9} \, \mathbf{a}_{2}- \left(2 x_{9} + z_{9}\right) \, \mathbf{a}_{3}$ | = | $- a x_{9} \,\mathbf{\hat{x}}- a x_{9} \,\mathbf{\hat{y}}+a z_{9} \,\mathbf{\hat{z}}$ | (48h) | F II |
$\mathbf{B_{36}}$ | = | $\left(2 x_{9} - z_{9}\right) \, \mathbf{a}_{1}- \left(2 x_{9} + z_{9}\right) \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ | = | $- a x_{9} \,\mathbf{\hat{x}}+a x_{9} \,\mathbf{\hat{y}}- a z_{9} \,\mathbf{\hat{z}}$ | (48h) | F II |
$\mathbf{B_{37}}$ | = | $- \left(2 x_{9} + z_{9}\right) \, \mathbf{a}_{1}+\left(2 x_{9} - z_{9}\right) \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ | = | $a x_{9} \,\mathbf{\hat{x}}- a x_{9} \,\mathbf{\hat{y}}- a z_{9} \,\mathbf{\hat{z}}$ | (48h) | F II |
$\mathbf{B_{38}}$ | = | $\left(2 x_{9} - z_{9}\right) \, \mathbf{a}_{1}+z_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ | = | $a z_{9} \,\mathbf{\hat{x}}+a x_{9} \,\mathbf{\hat{y}}+a x_{9} \,\mathbf{\hat{z}}$ | (48h) | F II |
$\mathbf{B_{39}}$ | = | $- \left(2 x_{9} + z_{9}\right) \, \mathbf{a}_{1}+z_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ | = | $a z_{9} \,\mathbf{\hat{x}}- a x_{9} \,\mathbf{\hat{y}}- a x_{9} \,\mathbf{\hat{z}}$ | (48h) | F II |
$\mathbf{B_{40}}$ | = | $z_{9} \, \mathbf{a}_{1}+\left(2 x_{9} - z_{9}\right) \, \mathbf{a}_{2}- \left(2 x_{9} + z_{9}\right) \, \mathbf{a}_{3}$ | = | $- a z_{9} \,\mathbf{\hat{x}}- a x_{9} \,\mathbf{\hat{y}}+a x_{9} \,\mathbf{\hat{z}}$ | (48h) | F II |
$\mathbf{B_{41}}$ | = | $z_{9} \, \mathbf{a}_{1}- \left(2 x_{9} + z_{9}\right) \, \mathbf{a}_{2}+\left(2 x_{9} - z_{9}\right) \, \mathbf{a}_{3}$ | = | $- a z_{9} \,\mathbf{\hat{x}}+a x_{9} \,\mathbf{\hat{y}}- a x_{9} \,\mathbf{\hat{z}}$ | (48h) | F II |
$\mathbf{B_{42}}$ | = | $z_{9} \, \mathbf{a}_{1}+\left(2 x_{9} - z_{9}\right) \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ | = | $a x_{9} \,\mathbf{\hat{x}}+a z_{9} \,\mathbf{\hat{y}}+a x_{9} \,\mathbf{\hat{z}}$ | (48h) | F II |
$\mathbf{B_{43}}$ | = | $z_{9} \, \mathbf{a}_{1}- \left(2 x_{9} + z_{9}\right) \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ | = | $- a x_{9} \,\mathbf{\hat{x}}+a z_{9} \,\mathbf{\hat{y}}- a x_{9} \,\mathbf{\hat{z}}$ | (48h) | F II |
$\mathbf{B_{44}}$ | = | $- \left(2 x_{9} + z_{9}\right) \, \mathbf{a}_{1}+z_{9} \, \mathbf{a}_{2}+\left(2 x_{9} - z_{9}\right) \, \mathbf{a}_{3}$ | = | $a x_{9} \,\mathbf{\hat{x}}- a z_{9} \,\mathbf{\hat{y}}- a x_{9} \,\mathbf{\hat{z}}$ | (48h) | F II |
$\mathbf{B_{45}}$ | = | $\left(2 x_{9} - z_{9}\right) \, \mathbf{a}_{1}+z_{9} \, \mathbf{a}_{2}- \left(2 x_{9} + z_{9}\right) \, \mathbf{a}_{3}$ | = | $- a x_{9} \,\mathbf{\hat{x}}- a z_{9} \,\mathbf{\hat{y}}+a x_{9} \,\mathbf{\hat{z}}$ | (48h) | F II |
$\mathbf{B_{46}}$ | = | $z_{10} \, \mathbf{a}_{1}+z_{10} \, \mathbf{a}_{2}+\left(2 x_{10} - z_{10}\right) \, \mathbf{a}_{3}$ | = | $a x_{10} \,\mathbf{\hat{x}}+a x_{10} \,\mathbf{\hat{y}}+a z_{10} \,\mathbf{\hat{z}}$ | (48h) | O III |
$\mathbf{B_{47}}$ | = | $z_{10} \, \mathbf{a}_{1}+z_{10} \, \mathbf{a}_{2}- \left(2 x_{10} + z_{10}\right) \, \mathbf{a}_{3}$ | = | $- a x_{10} \,\mathbf{\hat{x}}- a x_{10} \,\mathbf{\hat{y}}+a z_{10} \,\mathbf{\hat{z}}$ | (48h) | O III |
$\mathbf{B_{48}}$ | = | $\left(2 x_{10} - z_{10}\right) \, \mathbf{a}_{1}- \left(2 x_{10} + z_{10}\right) \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ | = | $- a x_{10} \,\mathbf{\hat{x}}+a x_{10} \,\mathbf{\hat{y}}- a z_{10} \,\mathbf{\hat{z}}$ | (48h) | O III |
$\mathbf{B_{49}}$ | = | $- \left(2 x_{10} + z_{10}\right) \, \mathbf{a}_{1}+\left(2 x_{10} - z_{10}\right) \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ | = | $a x_{10} \,\mathbf{\hat{x}}- a x_{10} \,\mathbf{\hat{y}}- a z_{10} \,\mathbf{\hat{z}}$ | (48h) | O III |
$\mathbf{B_{50}}$ | = | $\left(2 x_{10} - z_{10}\right) \, \mathbf{a}_{1}+z_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ | = | $a z_{10} \,\mathbf{\hat{x}}+a x_{10} \,\mathbf{\hat{y}}+a x_{10} \,\mathbf{\hat{z}}$ | (48h) | O III |
$\mathbf{B_{51}}$ | = | $- \left(2 x_{10} + z_{10}\right) \, \mathbf{a}_{1}+z_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ | = | $a z_{10} \,\mathbf{\hat{x}}- a x_{10} \,\mathbf{\hat{y}}- a x_{10} \,\mathbf{\hat{z}}$ | (48h) | O III |
$\mathbf{B_{52}}$ | = | $z_{10} \, \mathbf{a}_{1}+\left(2 x_{10} - z_{10}\right) \, \mathbf{a}_{2}- \left(2 x_{10} + z_{10}\right) \, \mathbf{a}_{3}$ | = | $- a z_{10} \,\mathbf{\hat{x}}- a x_{10} \,\mathbf{\hat{y}}+a x_{10} \,\mathbf{\hat{z}}$ | (48h) | O III |
$\mathbf{B_{53}}$ | = | $z_{10} \, \mathbf{a}_{1}- \left(2 x_{10} + z_{10}\right) \, \mathbf{a}_{2}+\left(2 x_{10} - z_{10}\right) \, \mathbf{a}_{3}$ | = | $- a z_{10} \,\mathbf{\hat{x}}+a x_{10} \,\mathbf{\hat{y}}- a x_{10} \,\mathbf{\hat{z}}$ | (48h) | O III |
$\mathbf{B_{54}}$ | = | $z_{10} \, \mathbf{a}_{1}+\left(2 x_{10} - z_{10}\right) \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ | = | $a x_{10} \,\mathbf{\hat{x}}+a z_{10} \,\mathbf{\hat{y}}+a x_{10} \,\mathbf{\hat{z}}$ | (48h) | O III |
$\mathbf{B_{55}}$ | = | $z_{10} \, \mathbf{a}_{1}- \left(2 x_{10} + z_{10}\right) \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ | = | $- a x_{10} \,\mathbf{\hat{x}}+a z_{10} \,\mathbf{\hat{y}}- a x_{10} \,\mathbf{\hat{z}}$ | (48h) | O III |
$\mathbf{B_{56}}$ | = | $- \left(2 x_{10} + z_{10}\right) \, \mathbf{a}_{1}+z_{10} \, \mathbf{a}_{2}+\left(2 x_{10} - z_{10}\right) \, \mathbf{a}_{3}$ | = | $a x_{10} \,\mathbf{\hat{x}}- a z_{10} \,\mathbf{\hat{y}}- a x_{10} \,\mathbf{\hat{z}}$ | (48h) | O III |
$\mathbf{B_{57}}$ | = | $\left(2 x_{10} - z_{10}\right) \, \mathbf{a}_{1}+z_{10} \, \mathbf{a}_{2}- \left(2 x_{10} + z_{10}\right) \, \mathbf{a}_{3}$ | = | $- a x_{10} \,\mathbf{\hat{x}}- a z_{10} \,\mathbf{\hat{y}}+a x_{10} \,\mathbf{\hat{z}}$ | (48h) | O III |