Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A13BC18D20E5_cF228_216_ah_c_gh_2eh_be-001

This structure originally had the label A13BC18D20E5_cF228_216_dh_b_fh_2eh_ce. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/R5TJ
or https://aflow.org/p/A13BC18D20E5_cF228_216_ah_c_gh_2eh_be-001
or PDF Version

Zunyite [Al$_{13}$(OH,F)$_{18}$Si$_{5}$O$_{20}$Cl ($S0_{8}$)] Structure: A13BC18D20E5_cF228_216_ah_c_gh_2eh_be-001

Picture of Structure; Click for Big Picture
Prototype Al$_{13}$ClF$_{18}$O$_{20}$Si$_{5}$
AFLOW prototype label A13BC18D20E5_cF228_216_ah_c_gh_2eh_be-001
Strukturbericht designation $S0_{8}$
Mineral name zunyite
ICSD 15745
Pearson symbol cF228
Space group number 216
Space group symbol $F\overline{4}3m$
AFLOW prototype command aflow --proto=A13BC18D20E5_cF228_216_ah_c_gh_2eh_be-001
--params=$a, \allowbreak x_{4}, \allowbreak x_{5}, \allowbreak x_{6}, \allowbreak x_{7}, \allowbreak x_{8}, \allowbreak z_{8}, \allowbreak x_{9}, \allowbreak z_{9}, \allowbreak x_{10}, \allowbreak z_{10}$

  • We use the structure proposed by (Kamb, 1960), a refinement of the original (Pauling, 1933) $S0_{8}$ structure. The only major difference is the $y$ coordinate of the OH/F-I site, which is now at a more reasonable distance from the chlorine atom.
  • For easy of visualization, we have used fluorine atoms to represent all of the (OH,F)$_{18}$ positions, but in reality the system is dominated by OH, not F. Kamb argues that the physics of hydrogen bonding makes it likely that the actual structure has composition (OH)$_{16}$F$_{2}$, with the fluorine atoms substituting for OH on the second (48h) site.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (4a) Al I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (4b) Si I
$\mathbf{B_{3}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (4c) Cl I
$\mathbf{B_{4}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (16e) O I
$\mathbf{B_{5}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}- 3 x_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}+a x_{4} \,\mathbf{\hat{z}}$ (16e) O I
$\mathbf{B_{6}}$ = $x_{4} \, \mathbf{a}_{1}- 3 x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}+a x_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (16e) O I
$\mathbf{B_{7}}$ = $- 3 x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}- a x_{4} \,\mathbf{\hat{y}}- a x_{4} \,\mathbf{\hat{z}}$ (16e) O I
$\mathbf{B_{8}}$ = $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (16e) O II
$\mathbf{B_{9}}$ = $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}- 3 x_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}+a x_{5} \,\mathbf{\hat{z}}$ (16e) O II
$\mathbf{B_{10}}$ = $x_{5} \, \mathbf{a}_{1}- 3 x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}+a x_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (16e) O II
$\mathbf{B_{11}}$ = $- 3 x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}- a x_{5} \,\mathbf{\hat{y}}- a x_{5} \,\mathbf{\hat{z}}$ (16e) O II
$\mathbf{B_{12}}$ = $x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}+a x_{6} \,\mathbf{\hat{z}}$ (16e) Si II
$\mathbf{B_{13}}$ = $x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}- 3 x_{6} \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}+a x_{6} \,\mathbf{\hat{z}}$ (16e) Si II
$\mathbf{B_{14}}$ = $x_{6} \, \mathbf{a}_{1}- 3 x_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}- a x_{6} \,\mathbf{\hat{z}}$ (16e) Si II
$\mathbf{B_{15}}$ = $- 3 x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}- a x_{6} \,\mathbf{\hat{z}}$ (16e) Si II
$\mathbf{B_{16}}$ = $- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $a x_{7} \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24g) F I
$\mathbf{B_{17}}$ = $x_{7} \, \mathbf{a}_{1}- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24g) F I
$\mathbf{B_{18}}$ = $x_{7} \, \mathbf{a}_{1}- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+a x_{7} \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24g) F I
$\mathbf{B_{19}}$ = $- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (24g) F I
$\mathbf{B_{20}}$ = $x_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+a x_{7} \,\mathbf{\hat{z}}$ (24g) F I
$\mathbf{B_{21}}$ = $- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(x_{7} - \frac{1}{2}\right) \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}- a \left(x_{7} - \frac{1}{2}\right) \,\mathbf{\hat{z}}$ (24g) F I
$\mathbf{B_{22}}$ = $z_{8} \, \mathbf{a}_{1}+z_{8} \, \mathbf{a}_{2}+\left(2 x_{8} - z_{8}\right) \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}+a z_{8} \,\mathbf{\hat{z}}$ (48h) Al II
$\mathbf{B_{23}}$ = $z_{8} \, \mathbf{a}_{1}+z_{8} \, \mathbf{a}_{2}- \left(2 x_{8} + z_{8}\right) \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}+a z_{8} \,\mathbf{\hat{z}}$ (48h) Al II
$\mathbf{B_{24}}$ = $\left(2 x_{8} - z_{8}\right) \, \mathbf{a}_{1}- \left(2 x_{8} + z_{8}\right) \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}- a z_{8} \,\mathbf{\hat{z}}$ (48h) Al II
$\mathbf{B_{25}}$ = $- \left(2 x_{8} + z_{8}\right) \, \mathbf{a}_{1}+\left(2 x_{8} - z_{8}\right) \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}- a z_{8} \,\mathbf{\hat{z}}$ (48h) Al II
$\mathbf{B_{26}}$ = $\left(2 x_{8} - z_{8}\right) \, \mathbf{a}_{1}+z_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $a z_{8} \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}+a x_{8} \,\mathbf{\hat{z}}$ (48h) Al II
$\mathbf{B_{27}}$ = $- \left(2 x_{8} + z_{8}\right) \, \mathbf{a}_{1}+z_{8} \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $a z_{8} \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}- a x_{8} \,\mathbf{\hat{z}}$ (48h) Al II
$\mathbf{B_{28}}$ = $z_{8} \, \mathbf{a}_{1}+\left(2 x_{8} - z_{8}\right) \, \mathbf{a}_{2}- \left(2 x_{8} + z_{8}\right) \, \mathbf{a}_{3}$ = $- a z_{8} \,\mathbf{\hat{x}}- a x_{8} \,\mathbf{\hat{y}}+a x_{8} \,\mathbf{\hat{z}}$ (48h) Al II
$\mathbf{B_{29}}$ = $z_{8} \, \mathbf{a}_{1}- \left(2 x_{8} + z_{8}\right) \, \mathbf{a}_{2}+\left(2 x_{8} - z_{8}\right) \, \mathbf{a}_{3}$ = $- a z_{8} \,\mathbf{\hat{x}}+a x_{8} \,\mathbf{\hat{y}}- a x_{8} \,\mathbf{\hat{z}}$ (48h) Al II
$\mathbf{B_{30}}$ = $z_{8} \, \mathbf{a}_{1}+\left(2 x_{8} - z_{8}\right) \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}+a z_{8} \,\mathbf{\hat{y}}+a x_{8} \,\mathbf{\hat{z}}$ (48h) Al II
$\mathbf{B_{31}}$ = $z_{8} \, \mathbf{a}_{1}- \left(2 x_{8} + z_{8}\right) \, \mathbf{a}_{2}+z_{8} \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}+a z_{8} \,\mathbf{\hat{y}}- a x_{8} \,\mathbf{\hat{z}}$ (48h) Al II
$\mathbf{B_{32}}$ = $- \left(2 x_{8} + z_{8}\right) \, \mathbf{a}_{1}+z_{8} \, \mathbf{a}_{2}+\left(2 x_{8} - z_{8}\right) \, \mathbf{a}_{3}$ = $a x_{8} \,\mathbf{\hat{x}}- a z_{8} \,\mathbf{\hat{y}}- a x_{8} \,\mathbf{\hat{z}}$ (48h) Al II
$\mathbf{B_{33}}$ = $\left(2 x_{8} - z_{8}\right) \, \mathbf{a}_{1}+z_{8} \, \mathbf{a}_{2}- \left(2 x_{8} + z_{8}\right) \, \mathbf{a}_{3}$ = $- a x_{8} \,\mathbf{\hat{x}}- a z_{8} \,\mathbf{\hat{y}}+a x_{8} \,\mathbf{\hat{z}}$ (48h) Al II
$\mathbf{B_{34}}$ = $z_{9} \, \mathbf{a}_{1}+z_{9} \, \mathbf{a}_{2}+\left(2 x_{9} - z_{9}\right) \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{x}}+a x_{9} \,\mathbf{\hat{y}}+a z_{9} \,\mathbf{\hat{z}}$ (48h) F II
$\mathbf{B_{35}}$ = $z_{9} \, \mathbf{a}_{1}+z_{9} \, \mathbf{a}_{2}- \left(2 x_{9} + z_{9}\right) \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{x}}- a x_{9} \,\mathbf{\hat{y}}+a z_{9} \,\mathbf{\hat{z}}$ (48h) F II
$\mathbf{B_{36}}$ = $\left(2 x_{9} - z_{9}\right) \, \mathbf{a}_{1}- \left(2 x_{9} + z_{9}\right) \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{x}}+a x_{9} \,\mathbf{\hat{y}}- a z_{9} \,\mathbf{\hat{z}}$ (48h) F II
$\mathbf{B_{37}}$ = $- \left(2 x_{9} + z_{9}\right) \, \mathbf{a}_{1}+\left(2 x_{9} - z_{9}\right) \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{x}}- a x_{9} \,\mathbf{\hat{y}}- a z_{9} \,\mathbf{\hat{z}}$ (48h) F II
$\mathbf{B_{38}}$ = $\left(2 x_{9} - z_{9}\right) \, \mathbf{a}_{1}+z_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $a z_{9} \,\mathbf{\hat{x}}+a x_{9} \,\mathbf{\hat{y}}+a x_{9} \,\mathbf{\hat{z}}$ (48h) F II
$\mathbf{B_{39}}$ = $- \left(2 x_{9} + z_{9}\right) \, \mathbf{a}_{1}+z_{9} \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $a z_{9} \,\mathbf{\hat{x}}- a x_{9} \,\mathbf{\hat{y}}- a x_{9} \,\mathbf{\hat{z}}$ (48h) F II
$\mathbf{B_{40}}$ = $z_{9} \, \mathbf{a}_{1}+\left(2 x_{9} - z_{9}\right) \, \mathbf{a}_{2}- \left(2 x_{9} + z_{9}\right) \, \mathbf{a}_{3}$ = $- a z_{9} \,\mathbf{\hat{x}}- a x_{9} \,\mathbf{\hat{y}}+a x_{9} \,\mathbf{\hat{z}}$ (48h) F II
$\mathbf{B_{41}}$ = $z_{9} \, \mathbf{a}_{1}- \left(2 x_{9} + z_{9}\right) \, \mathbf{a}_{2}+\left(2 x_{9} - z_{9}\right) \, \mathbf{a}_{3}$ = $- a z_{9} \,\mathbf{\hat{x}}+a x_{9} \,\mathbf{\hat{y}}- a x_{9} \,\mathbf{\hat{z}}$ (48h) F II
$\mathbf{B_{42}}$ = $z_{9} \, \mathbf{a}_{1}+\left(2 x_{9} - z_{9}\right) \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{x}}+a z_{9} \,\mathbf{\hat{y}}+a x_{9} \,\mathbf{\hat{z}}$ (48h) F II
$\mathbf{B_{43}}$ = $z_{9} \, \mathbf{a}_{1}- \left(2 x_{9} + z_{9}\right) \, \mathbf{a}_{2}+z_{9} \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{x}}+a z_{9} \,\mathbf{\hat{y}}- a x_{9} \,\mathbf{\hat{z}}$ (48h) F II
$\mathbf{B_{44}}$ = $- \left(2 x_{9} + z_{9}\right) \, \mathbf{a}_{1}+z_{9} \, \mathbf{a}_{2}+\left(2 x_{9} - z_{9}\right) \, \mathbf{a}_{3}$ = $a x_{9} \,\mathbf{\hat{x}}- a z_{9} \,\mathbf{\hat{y}}- a x_{9} \,\mathbf{\hat{z}}$ (48h) F II
$\mathbf{B_{45}}$ = $\left(2 x_{9} - z_{9}\right) \, \mathbf{a}_{1}+z_{9} \, \mathbf{a}_{2}- \left(2 x_{9} + z_{9}\right) \, \mathbf{a}_{3}$ = $- a x_{9} \,\mathbf{\hat{x}}- a z_{9} \,\mathbf{\hat{y}}+a x_{9} \,\mathbf{\hat{z}}$ (48h) F II
$\mathbf{B_{46}}$ = $z_{10} \, \mathbf{a}_{1}+z_{10} \, \mathbf{a}_{2}+\left(2 x_{10} - z_{10}\right) \, \mathbf{a}_{3}$ = $a x_{10} \,\mathbf{\hat{x}}+a x_{10} \,\mathbf{\hat{y}}+a z_{10} \,\mathbf{\hat{z}}$ (48h) O III
$\mathbf{B_{47}}$ = $z_{10} \, \mathbf{a}_{1}+z_{10} \, \mathbf{a}_{2}- \left(2 x_{10} + z_{10}\right) \, \mathbf{a}_{3}$ = $- a x_{10} \,\mathbf{\hat{x}}- a x_{10} \,\mathbf{\hat{y}}+a z_{10} \,\mathbf{\hat{z}}$ (48h) O III
$\mathbf{B_{48}}$ = $\left(2 x_{10} - z_{10}\right) \, \mathbf{a}_{1}- \left(2 x_{10} + z_{10}\right) \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $- a x_{10} \,\mathbf{\hat{x}}+a x_{10} \,\mathbf{\hat{y}}- a z_{10} \,\mathbf{\hat{z}}$ (48h) O III
$\mathbf{B_{49}}$ = $- \left(2 x_{10} + z_{10}\right) \, \mathbf{a}_{1}+\left(2 x_{10} - z_{10}\right) \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $a x_{10} \,\mathbf{\hat{x}}- a x_{10} \,\mathbf{\hat{y}}- a z_{10} \,\mathbf{\hat{z}}$ (48h) O III
$\mathbf{B_{50}}$ = $\left(2 x_{10} - z_{10}\right) \, \mathbf{a}_{1}+z_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $a z_{10} \,\mathbf{\hat{x}}+a x_{10} \,\mathbf{\hat{y}}+a x_{10} \,\mathbf{\hat{z}}$ (48h) O III
$\mathbf{B_{51}}$ = $- \left(2 x_{10} + z_{10}\right) \, \mathbf{a}_{1}+z_{10} \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $a z_{10} \,\mathbf{\hat{x}}- a x_{10} \,\mathbf{\hat{y}}- a x_{10} \,\mathbf{\hat{z}}$ (48h) O III
$\mathbf{B_{52}}$ = $z_{10} \, \mathbf{a}_{1}+\left(2 x_{10} - z_{10}\right) \, \mathbf{a}_{2}- \left(2 x_{10} + z_{10}\right) \, \mathbf{a}_{3}$ = $- a z_{10} \,\mathbf{\hat{x}}- a x_{10} \,\mathbf{\hat{y}}+a x_{10} \,\mathbf{\hat{z}}$ (48h) O III
$\mathbf{B_{53}}$ = $z_{10} \, \mathbf{a}_{1}- \left(2 x_{10} + z_{10}\right) \, \mathbf{a}_{2}+\left(2 x_{10} - z_{10}\right) \, \mathbf{a}_{3}$ = $- a z_{10} \,\mathbf{\hat{x}}+a x_{10} \,\mathbf{\hat{y}}- a x_{10} \,\mathbf{\hat{z}}$ (48h) O III
$\mathbf{B_{54}}$ = $z_{10} \, \mathbf{a}_{1}+\left(2 x_{10} - z_{10}\right) \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $a x_{10} \,\mathbf{\hat{x}}+a z_{10} \,\mathbf{\hat{y}}+a x_{10} \,\mathbf{\hat{z}}$ (48h) O III
$\mathbf{B_{55}}$ = $z_{10} \, \mathbf{a}_{1}- \left(2 x_{10} + z_{10}\right) \, \mathbf{a}_{2}+z_{10} \, \mathbf{a}_{3}$ = $- a x_{10} \,\mathbf{\hat{x}}+a z_{10} \,\mathbf{\hat{y}}- a x_{10} \,\mathbf{\hat{z}}$ (48h) O III
$\mathbf{B_{56}}$ = $- \left(2 x_{10} + z_{10}\right) \, \mathbf{a}_{1}+z_{10} \, \mathbf{a}_{2}+\left(2 x_{10} - z_{10}\right) \, \mathbf{a}_{3}$ = $a x_{10} \,\mathbf{\hat{x}}- a z_{10} \,\mathbf{\hat{y}}- a x_{10} \,\mathbf{\hat{z}}$ (48h) O III
$\mathbf{B_{57}}$ = $\left(2 x_{10} - z_{10}\right) \, \mathbf{a}_{1}+z_{10} \, \mathbf{a}_{2}- \left(2 x_{10} + z_{10}\right) \, \mathbf{a}_{3}$ = $- a x_{10} \,\mathbf{\hat{x}}- a z_{10} \,\mathbf{\hat{y}}+a x_{10} \,\mathbf{\hat{z}}$ (48h) O III

References


Prototype Generator

aflow --proto=A13BC18D20E5_cF228_216_ah_c_gh_2eh_be --params=$a,x_{4},x_{5},x_{6},x_{7},x_{8},z_{8},x_{9},z_{9},x_{10},z_{10}$

Species:

Running:

Output: