AFLOW Prototype: A6B9CD2E6_cF96_225_e_af_b_c_e-001
This structure originally had the label A6B9CD2E6_cF96_225_e_bf_a_c_e. Calls to that address will be redirected here.
If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)
Links to this page
https://aflow.org/p/N4GS
or
https://aflow.org/p/A6B9CD2E6_cF96_225_e_af_b_c_e-001
or
PDF Version
Prototype | C$_{12}$Cu$_{3}$Fe$_{2}$(H$_{2}$O)$_{x}$N$_{12}$ |
AFLOW prototype label | A6B9CD2E6_cF96_225_e_af_b_c_e-001 |
Strukturbericht designation | $J2_5$ |
Mineral name | prussian blue analog |
ICSD | 77916 |
Pearson symbol | cF96 |
Space group number | 225 |
Space group symbol | $Fm\overline{3}m$ |
AFLOW prototype command |
aflow --proto=A6B9CD2E6_cF96_225_e_af_b_c_e-001
--params=$a, \allowbreak x_{4}, \allowbreak x_{5}, \allowbreak x_{6}$ |
Cd$_{3}$[Co(CN)$_{6}$]$_{2}$, Co$_{3}$[Co(CN)$_{6}$]$_{2}$, Cu$_{3}$[Fe(CN)$_{6}$]$_{2}$, Fe$_{3}$[Fe(CN)$_{6}$]$_{2}$, Td$_{3}$[Fe(CN)$_{6}$]$_{2}$, Zn$_{3}$[Fe(CN)$_{6}$]$_{2}$
Prussian Blue Analogs,where Prussian Blue is Fe$_{3}$[Fe(CN)$_{6}$]$_{2}$.
Basis vectors
Lattice coordinates | Cartesian coordinates | Wyckoff position | Atom type | |||
---|---|---|---|---|---|---|
$\mathbf{B_{1}}$ | = | $0$ | = | $0$ | (4a) | Cu I |
$\mathbf{B_{2}}$ | = | $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ | = | $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ | (4b) | Fe I |
$\mathbf{B_{3}}$ | = | $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ | = | $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ | (8c) | H I |
$\mathbf{B_{4}}$ | = | $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ | = | $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}+\frac{3}{4}a \,\mathbf{\hat{z}}$ | (8c) | H I |
$\mathbf{B_{5}}$ | = | $- x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ | = | $a x_{4} \,\mathbf{\hat{x}}$ | (24e) | C I |
$\mathbf{B_{6}}$ | = | $x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{x}}$ | (24e) | C I |
$\mathbf{B_{7}}$ | = | $x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ | = | $a x_{4} \,\mathbf{\hat{y}}$ | (24e) | C I |
$\mathbf{B_{8}}$ | = | $- x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{y}}$ | (24e) | C I |
$\mathbf{B_{9}}$ | = | $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ | = | $a x_{4} \,\mathbf{\hat{z}}$ | (24e) | C I |
$\mathbf{B_{10}}$ | = | $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ | = | $- a x_{4} \,\mathbf{\hat{z}}$ | (24e) | C I |
$\mathbf{B_{11}}$ | = | $- x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ | = | $a x_{5} \,\mathbf{\hat{x}}$ | (24e) | N I |
$\mathbf{B_{12}}$ | = | $x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ | = | $- a x_{5} \,\mathbf{\hat{x}}$ | (24e) | N I |
$\mathbf{B_{13}}$ | = | $x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ | = | $a x_{5} \,\mathbf{\hat{y}}$ | (24e) | N I |
$\mathbf{B_{14}}$ | = | $- x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ | = | $- a x_{5} \,\mathbf{\hat{y}}$ | (24e) | N I |
$\mathbf{B_{15}}$ | = | $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ | = | $a x_{5} \,\mathbf{\hat{z}}$ | (24e) | N I |
$\mathbf{B_{16}}$ | = | $- x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ | = | $- a x_{5} \,\mathbf{\hat{z}}$ | (24e) | N I |
$\mathbf{B_{17}}$ | = | $x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ | = | $a x_{6} \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}+a x_{6} \,\mathbf{\hat{z}}$ | (32f) | Cu II |
$\mathbf{B_{18}}$ | = | $x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}- 3 x_{6} \, \mathbf{a}_{3}$ | = | $- a x_{6} \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}+a x_{6} \,\mathbf{\hat{z}}$ | (32f) | Cu II |
$\mathbf{B_{19}}$ | = | $x_{6} \, \mathbf{a}_{1}- 3 x_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ | = | $- a x_{6} \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}- a x_{6} \,\mathbf{\hat{z}}$ | (32f) | Cu II |
$\mathbf{B_{20}}$ | = | $- 3 x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ | = | $a x_{6} \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}- a x_{6} \,\mathbf{\hat{z}}$ | (32f) | Cu II |
$\mathbf{B_{21}}$ | = | $- x_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}+3 x_{6} \, \mathbf{a}_{3}$ | = | $a x_{6} \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}- a x_{6} \,\mathbf{\hat{z}}$ | (32f) | Cu II |
$\mathbf{B_{22}}$ | = | $- x_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}- x_{6} \, \mathbf{a}_{3}$ | = | $- a x_{6} \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}- a x_{6} \,\mathbf{\hat{z}}$ | (32f) | Cu II |
$\mathbf{B_{23}}$ | = | $- x_{6} \, \mathbf{a}_{1}+3 x_{6} \, \mathbf{a}_{2}- x_{6} \, \mathbf{a}_{3}$ | = | $a x_{6} \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}+a x_{6} \,\mathbf{\hat{z}}$ | (32f) | Cu II |
$\mathbf{B_{24}}$ | = | $3 x_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}- x_{6} \, \mathbf{a}_{3}$ | = | $- a x_{6} \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}+a x_{6} \,\mathbf{\hat{z}}$ | (32f) | Cu II |