Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A6B9CD2E6_cF96_225_e_af_b_c_e-001

This structure originally had the label A6B9CD2E6_cF96_225_e_bf_a_c_e. Calls to that address will be redirected here.

If you are using this page, please cite:
D. Hicks, M.J. Mehl, M. Esters, C. Oses, O. Levy, G.L.W. Hart, C. Toher, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 3, Comp. Mat. Sci. 199, 110450 (2021). (doi=10.1016/j.commatsci.2021.110450)

Links to this page

https://aflow.org/p/N4GS
or https://aflow.org/p/A6B9CD2E6_cF96_225_e_af_b_c_e-001
or PDF Version

Cu$_{3}$[Fe(CN)$_{6}$]$_{2}\cdot x$H$_{2}$O ($J2_{5}$) Structure: A6B9CD2E6_cF96_225_e_af_b_c_e-001

Picture of Structure; Click for Big Picture
Prototype C$_{12}$Cu$_{3}$Fe$_{2}$(H$_{2}$O)$_{x}$N$_{12}$
AFLOW prototype label A6B9CD2E6_cF96_225_e_af_b_c_e-001
Strukturbericht designation $J2_5$
Mineral name prussian blue analog
ICSD 77916
Pearson symbol cF96
Space group number 225
Space group symbol $Fm\overline{3}m$
AFLOW prototype command aflow --proto=A6B9CD2E6_cF96_225_e_af_b_c_e-001
--params=$a, \allowbreak x_{4}, \allowbreak x_{5}, \allowbreak x_{6}$

Other compounds with this structure

Cd$_{3}$[Co(CN)$_{6}$]$_{2}$,  Co$_{3}$[Co(CN)$_{6}$]$_{2}$,  Cu$_{3}$[Fe(CN)$_{6}$]$_{2}$,  Fe$_{3}$[Fe(CN)$_{6}$]$_{2}$,  Td$_{3}$[Fe(CN)$_{6}$]$_{2}$,  Zn$_{3}$[Fe(CN)$_{6}$]$_{2}$


  • These compounds form a class called Prussian Blue Analogs, where Prussian Blue is Fe$_{3}$[Fe(CN)$_{6}$]$_{2}$.
  • (van Bever, 1938) studied what he believed to be the hydrated form of this structure, with $x ≈ 3$. In that case the water molecules occupy the (8c) sites, but each site is only occupied 75% of the time. The water sites are surrounded by a tetrahedron of copper (32e) sites, but only 6.25% of these sites are occupied.
  • (Weiser, 1942) studied the anhydrous form. They found that copper atoms partially occupying the (32e) sites move to the (8c) site and replace the water molecules. This site is now fully occupied with copper.
  • To convert from the hydrated to anhydrous structure, remove the copper (32e) molecules from the (32e) sites in the CIF or POSCAR file, and relabel the (8c) site as copper.
  • For a picture of the resulting structure see (Jiao, 2017).
  • The AFLOW label models the structure as if the sites were fully occupied.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $0$ = $0$ (4a) Cu I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}+\frac{1}{2} \, \mathbf{a}_{2}+\frac{1}{2} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}a \,\mathbf{\hat{y}}+\frac{1}{2}a \,\mathbf{\hat{z}}$ (4b) Fe I
$\mathbf{B_{3}}$ = $\frac{1}{4} \, \mathbf{a}_{1}+\frac{1}{4} \, \mathbf{a}_{2}+\frac{1}{4} \, \mathbf{a}_{3}$ = $\frac{1}{4}a \,\mathbf{\hat{x}}+\frac{1}{4}a \,\mathbf{\hat{y}}+\frac{1}{4}a \,\mathbf{\hat{z}}$ (8c) H I
$\mathbf{B_{4}}$ = $\frac{3}{4} \, \mathbf{a}_{1}+\frac{3}{4} \, \mathbf{a}_{2}+\frac{3}{4} \, \mathbf{a}_{3}$ = $\frac{3}{4}a \,\mathbf{\hat{x}}+\frac{3}{4}a \,\mathbf{\hat{y}}+\frac{3}{4}a \,\mathbf{\hat{z}}$ (8c) H I
$\mathbf{B_{5}}$ = $- x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{x}}$ (24e) C I
$\mathbf{B_{6}}$ = $x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{x}}$ (24e) C I
$\mathbf{B_{7}}$ = $x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{y}}$ (24e) C I
$\mathbf{B_{8}}$ = $- x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{y}}$ (24e) C I
$\mathbf{B_{9}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}- x_{4} \, \mathbf{a}_{3}$ = $a x_{4} \,\mathbf{\hat{z}}$ (24e) C I
$\mathbf{B_{10}}$ = $- x_{4} \, \mathbf{a}_{1}- x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $- a x_{4} \,\mathbf{\hat{z}}$ (24e) C I
$\mathbf{B_{11}}$ = $- x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{x}}$ (24e) N I
$\mathbf{B_{12}}$ = $x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{x}}$ (24e) N I
$\mathbf{B_{13}}$ = $x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{y}}$ (24e) N I
$\mathbf{B_{14}}$ = $- x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{y}}$ (24e) N I
$\mathbf{B_{15}}$ = $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}- x_{5} \, \mathbf{a}_{3}$ = $a x_{5} \,\mathbf{\hat{z}}$ (24e) N I
$\mathbf{B_{16}}$ = $- x_{5} \, \mathbf{a}_{1}- x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $- a x_{5} \,\mathbf{\hat{z}}$ (24e) N I
$\mathbf{B_{17}}$ = $x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}+a x_{6} \,\mathbf{\hat{z}}$ (32f) Cu II
$\mathbf{B_{18}}$ = $x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}- 3 x_{6} \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}+a x_{6} \,\mathbf{\hat{z}}$ (32f) Cu II
$\mathbf{B_{19}}$ = $x_{6} \, \mathbf{a}_{1}- 3 x_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}- a x_{6} \,\mathbf{\hat{z}}$ (32f) Cu II
$\mathbf{B_{20}}$ = $- 3 x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}- a x_{6} \,\mathbf{\hat{z}}$ (32f) Cu II
$\mathbf{B_{21}}$ = $- x_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}+3 x_{6} \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}- a x_{6} \,\mathbf{\hat{z}}$ (32f) Cu II
$\mathbf{B_{22}}$ = $- x_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}- x_{6} \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}- a x_{6} \,\mathbf{\hat{z}}$ (32f) Cu II
$\mathbf{B_{23}}$ = $- x_{6} \, \mathbf{a}_{1}+3 x_{6} \, \mathbf{a}_{2}- x_{6} \, \mathbf{a}_{3}$ = $a x_{6} \,\mathbf{\hat{x}}- a x_{6} \,\mathbf{\hat{y}}+a x_{6} \,\mathbf{\hat{z}}$ (32f) Cu II
$\mathbf{B_{24}}$ = $3 x_{6} \, \mathbf{a}_{1}- x_{6} \, \mathbf{a}_{2}- x_{6} \, \mathbf{a}_{3}$ = $- a x_{6} \,\mathbf{\hat{x}}+a x_{6} \,\mathbf{\hat{y}}+a x_{6} \,\mathbf{\hat{z}}$ (32f) Cu II

References

  • A. K. van Bever, The Crystal Structure of Some Ferricyanides with Bivalent Kations, Rec. Trav. Chim. Pays-Bas 57, 1259–1268 (1938), doi:10.1002/recl.19380571108.
  • H. B. Weiser, W. O. Milligan, and J. B. Bates, X-ray Diffraction Studies on Heavy-metal Iron-cyanides, J. Phys. Chem. 46, 99–111 (1942), doi:10.1021/j150415a013.
  • S. Jiao, J. Tu, H. Xie, Z. Cai, S. Wang, and J. Zhu, The electrochemical performance of Cu$_{3}$[Fe(CN)$_{6}$]$_{2}$ as a cathode material for sodium-ion batteries, Mater. Res. Bull. 86, 194–200 (2017), doi:10.1016/j.materresbull.2016.10.019.

Prototype Generator

aflow --proto=A6B9CD2E6_cF96_225_e_af_b_c_e --params=$a,x_{4},x_{5},x_{6}$

Species:

Running:

Output: