Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: AB4_oC20_41_a_2b-001

This structure originally had the label AB4_oC20_41_a_2b. Calls to that address will be redirected here.

If you are using this page, please cite:
M. J. Mehl, D. Hicks, C. Toher, O. Levy, R. M. Hanson, G. L. W. Hart, and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 1, Comp. Mat. Sci. 136, S1-S828 (2017). (doi=10.1016/j.commatsci.2017.01.017)

Links to this page

https://aflow.org/p/MALE
or https://aflow.org/p/AB4_oC20_41_a_2b-001
or PDF Version

PtSn$_{4}$ ($D1_{c}$) Structure: AB4_oC20_41_a_2b-001

Picture of Structure; Click for Big Picture
Prototype PtSn$_{4}$
AFLOW prototype label AB4_oC20_41_a_2b-001
Strukturbericht designation $D1_{c}$
ICSD 105793
Pearson symbol oC20
Space group number 41
Space group symbol $Aea2$
AFLOW prototype command aflow --proto=AB4_oC20_41_a_2b-001
--params=$a, \allowbreak b/a, \allowbreak c/a, \allowbreak z_{1}, \allowbreak x_{2}, \allowbreak y_{2}, \allowbreak z_{2}, \allowbreak x_{3}, \allowbreak y_{3}, \allowbreak z_{3}$

Other compounds with this structure

AuSn$_{4}$,  IrSn$_{4}$,  PdSn$_{4}$


  • The published atomic positions have $x_{2}=y_{3}$, $x_{3}=y_{2}$ and $z_{2}=-z_{3}$. This puts the system into space group $Ccce$ #68, very similar to PdSn$_{4}$.
  • To get space group $Aba2$ #41 we shifted the $y_{2}$ and $z_{3}$ positions slightly. Even then we could not place this in space group $Aba2$ until we adjusted the tolerance. The original structure can be recovered using the command:
  • aflow --proto=AB4_oC20_41_a_2b:Pt:Sn --tolerance=0.001 --params=a,b/a,c/a,x$_{2}$,y$_{2}$,z$_{2}$,x$_{3}$,y$_{3}$,z$_{3}$
  • (Schubert, 1950) give the lattice constants in kX units. We used the factor of 1.00202Å/kX from (Wood, 1947) to convert to Ångströms.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&a \,\mathbf{\hat{x}}\\\mathbf{a_{2}}&=&\frac{1}{2}b \,\mathbf{\hat{y}}- \frac{1}{2}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&\frac{1}{2}b \,\mathbf{\hat{y}}+\frac{1}{2}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $- z_{1} \, \mathbf{a}_{2}+z_{1} \, \mathbf{a}_{3}$ = $c z_{1} \,\mathbf{\hat{z}}$ (4a) Pt I
$\mathbf{B_{2}}$ = $\frac{1}{2} \, \mathbf{a}_{1}- \left(z_{1} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(z_{1} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $\frac{1}{2}a \,\mathbf{\hat{x}}+\frac{1}{2}b \,\mathbf{\hat{y}}+c z_{1} \,\mathbf{\hat{z}}$ (4a) Pt I
$\mathbf{B_{3}}$ = $x_{2} \, \mathbf{a}_{1}+\left(y_{2} - z_{2}\right) \, \mathbf{a}_{2}+\left(y_{2} + z_{2}\right) \, \mathbf{a}_{3}$ = $a x_{2} \,\mathbf{\hat{x}}+b y_{2} \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (8b) Sn I
$\mathbf{B_{4}}$ = $- x_{2} \, \mathbf{a}_{1}- \left(y_{2} + z_{2}\right) \, \mathbf{a}_{2}- \left(y_{2} - z_{2}\right) \, \mathbf{a}_{3}$ = $- a x_{2} \,\mathbf{\hat{x}}- b y_{2} \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (8b) Sn I
$\mathbf{B_{5}}$ = $\left(x_{2} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{2} + z_{2} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- y_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{2} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- b \left(y_{2} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (8b) Sn I
$\mathbf{B_{6}}$ = $- \left(x_{2} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{2} - z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{2} + z_{2} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{2} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+b \left(y_{2} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{2} \,\mathbf{\hat{z}}$ (8b) Sn I
$\mathbf{B_{7}}$ = $x_{3} \, \mathbf{a}_{1}+\left(y_{3} - z_{3}\right) \, \mathbf{a}_{2}+\left(y_{3} + z_{3}\right) \, \mathbf{a}_{3}$ = $a x_{3} \,\mathbf{\hat{x}}+b y_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (8b) Sn II
$\mathbf{B_{8}}$ = $- x_{3} \, \mathbf{a}_{1}- \left(y_{3} + z_{3}\right) \, \mathbf{a}_{2}- \left(y_{3} - z_{3}\right) \, \mathbf{a}_{3}$ = $- a x_{3} \,\mathbf{\hat{x}}- b y_{3} \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (8b) Sn II
$\mathbf{B_{9}}$ = $\left(x_{3} + \frac{1}{2}\right) \, \mathbf{a}_{1}- \left(y_{3} + z_{3} - \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(- y_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $a \left(x_{3} + \frac{1}{2}\right) \,\mathbf{\hat{x}}- b \left(y_{3} - \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (8b) Sn II
$\mathbf{B_{10}}$ = $- \left(x_{3} - \frac{1}{2}\right) \, \mathbf{a}_{1}+\left(y_{3} - z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{2}+\left(y_{3} + z_{3} + \frac{1}{2}\right) \, \mathbf{a}_{3}$ = $- a \left(x_{3} - \frac{1}{2}\right) \,\mathbf{\hat{x}}+b \left(y_{3} + \frac{1}{2}\right) \,\mathbf{\hat{y}}+c z_{3} \,\mathbf{\hat{z}}$ (8b) Sn II

References

  • K. Schubert and U. Rösler, Die Kristallstruktur von PtSn$_4$, Z. Metallkd. 41, 298–300 (1950).
  • E. A. Wood, The Conversion Factor for kX Units to Angström Units, J. Appl. Phys. 18, 929–930 (1947), doi:10.1063/1.1697570.

Found in

  • P. Villars and L. Calvert, Pearson's Handbook of Crystallographic Data for Intermetallic Phases (ASM International, Materials Park, OH, 1991), 2nd edn.

Prototype Generator

aflow --proto=AB4_oC20_41_a_2b --params=$a,b/a,c/a,z_{1},x_{2},y_{2},z_{2},x_{3},y_{3},z_{3}$

Species:

Running:

Output: