Encyclopedia of Crystallographic Prototypes

AFLOW Prototype: A8B2C3_hR13_160_2a2b_2a_b-001

If you are using this page, please cite:
H. Eckert, S. Divilov, M. J. Mehl, D. Hicks, A. C. Zettel, M. Esters. X. Campilongo and S. Curtarolo, The AFLOW Library of Crystallographic Prototypes: Part 4. Submitted to Computational Materials Science.

Links to this page

https://aflow.org/p/L333
or https://aflow.org/p/A8B2C3_hR13_160_2a2b_2a_b-001
or PDF Version

γ-Na$_{2}$Ti$_{3}$Cl$_{8}$ Structure: A8B2C3_hR13_160_2a2b_2a_b-001

Picture of Structure; Click for Big Picture
Prototype Cl$_{8}$Na$_{2}$Ti$_{3}$
AFLOW prototype label A8B2C3_hR13_160_2a2b_2a_b-001
ICSD 259123
Pearson symbol hR13
Space group number 160
Space group symbol $R3m$
AFLOW prototype command aflow --proto=A8B2C3_hR13_160_2a2b_2a_b-001
--params=$a, \allowbreak c/a, \allowbreak x_{1}, \allowbreak x_{2}, \allowbreak x_{3}, \allowbreak x_{4}, \allowbreak x_{5}, \allowbreak z_{5}, \allowbreak x_{6}, \allowbreak z_{6}, \allowbreak x_{7}, \allowbreak z_{7}$

  • Na$_{2}$Ti$_{3}$Cl$_{8}$ can be found in three different phases (Hänni, 2017):
    • $\gamma$–Na$_{2}$Ti$_{3}$Cl$_{8}$, below 210K (heating) or 190K (cooling) (this structure).
    • $\beta$–Na$_{2}$Ti$_{3}$Cl$_{8}$ is found between 190 and 210K when samples are cooled. It is in the $R\overline{3}m$ space group, but we have no atomic positions.
    • $\alpha$–Na$_{2}$Ti$_{3}$Cl$_{8}$, above 190/210K, is in the Na$_{2}$Mn$_{3}$Cl$_{8}$ structure.
  • (Hänni, 2017) give the lattice constants of $\gamma$–Na$_{2}$Ti$_{3}$Cl$_{8}$ at 2K, and the atomic positions at 1.6K.
  • Hexagonal settings of this structure can be obtained with the option --hex.

\[ \begin{array}{ccc} \mathbf{a_{1}}&=&\frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{2}}&=&\frac{1}{\sqrt{3}}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}}\\\mathbf{a_{3}}&=&- \frac{1}{2}a \,\mathbf{\hat{x}}- \frac{\sqrt{3}}{6}a \,\mathbf{\hat{y}}+\frac{1}{3}c \,\mathbf{\hat{z}} \end{array}\]

Basis vectors

Lattice coordinates Cartesian coordinates Wyckoff position Atom type
$\mathbf{B_{1}}$ = $x_{1} \, \mathbf{a}_{1}+x_{1} \, \mathbf{a}_{2}+x_{1} \, \mathbf{a}_{3}$ = $c x_{1} \,\mathbf{\hat{z}}$ (1a) Cl I
$\mathbf{B_{2}}$ = $x_{2} \, \mathbf{a}_{1}+x_{2} \, \mathbf{a}_{2}+x_{2} \, \mathbf{a}_{3}$ = $c x_{2} \,\mathbf{\hat{z}}$ (1a) Cl II
$\mathbf{B_{3}}$ = $x_{3} \, \mathbf{a}_{1}+x_{3} \, \mathbf{a}_{2}+x_{3} \, \mathbf{a}_{3}$ = $c x_{3} \,\mathbf{\hat{z}}$ (1a) Na I
$\mathbf{B_{4}}$ = $x_{4} \, \mathbf{a}_{1}+x_{4} \, \mathbf{a}_{2}+x_{4} \, \mathbf{a}_{3}$ = $c x_{4} \,\mathbf{\hat{z}}$ (1a) Na II
$\mathbf{B_{5}}$ = $x_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+z_{5} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{5} - z_{5}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{5} - z_{5}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{5} + z_{5}\right) \,\mathbf{\hat{z}}$ (3b) Cl III
$\mathbf{B_{6}}$ = $z_{5} \, \mathbf{a}_{1}+x_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{5} - z_{5}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{5} - z_{5}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{5} + z_{5}\right) \,\mathbf{\hat{z}}$ (3b) Cl III
$\mathbf{B_{7}}$ = $x_{5} \, \mathbf{a}_{1}+z_{5} \, \mathbf{a}_{2}+x_{5} \, \mathbf{a}_{3}$ = $- \frac{1}{\sqrt{3}}a \left(x_{5} - z_{5}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{5} + z_{5}\right) \,\mathbf{\hat{z}}$ (3b) Cl III
$\mathbf{B_{8}}$ = $x_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+z_{6} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{6} - z_{6}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{6} - z_{6}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{6} + z_{6}\right) \,\mathbf{\hat{z}}$ (3b) Cl IV
$\mathbf{B_{9}}$ = $z_{6} \, \mathbf{a}_{1}+x_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{6} - z_{6}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{6} - z_{6}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{6} + z_{6}\right) \,\mathbf{\hat{z}}$ (3b) Cl IV
$\mathbf{B_{10}}$ = $x_{6} \, \mathbf{a}_{1}+z_{6} \, \mathbf{a}_{2}+x_{6} \, \mathbf{a}_{3}$ = $- \frac{1}{\sqrt{3}}a \left(x_{6} - z_{6}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{6} + z_{6}\right) \,\mathbf{\hat{z}}$ (3b) Cl IV
$\mathbf{B_{11}}$ = $x_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+z_{7} \, \mathbf{a}_{3}$ = $\frac{1}{2}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{7} + z_{7}\right) \,\mathbf{\hat{z}}$ (3b) Ti I
$\mathbf{B_{12}}$ = $z_{7} \, \mathbf{a}_{1}+x_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $- \frac{1}{2}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{x}}+\frac{\sqrt{3}}{6}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{7} + z_{7}\right) \,\mathbf{\hat{z}}$ (3b) Ti I
$\mathbf{B_{13}}$ = $x_{7} \, \mathbf{a}_{1}+z_{7} \, \mathbf{a}_{2}+x_{7} \, \mathbf{a}_{3}$ = $- \frac{1}{\sqrt{3}}a \left(x_{7} - z_{7}\right) \,\mathbf{\hat{y}}+\frac{1}{3}c \left(2 x_{7} + z_{7}\right) \,\mathbf{\hat{z}}$ (3b) Ti I

References

  • N. Hänni, M. Frontzek, J. Hauser, D. Cheptiakov, and K. Krämer, Low Temperature Phases of Na$_{2}$Ti$_{3}$Cl$_{8}$ Revisited, Z. Anorganische und Allgemeine Chemie 643, 2063–2069 (2017), doi:10.1002/zaac.201700331.

Prototype Generator

aflow --proto=A8B2C3_hR13_160_2a2b_2a_b --params=$a,c/a,x_{1},x_{2},x_{3},x_{4},x_{5},z_{5},x_{6},z_{6},x_{7},z_{7}$

Species:

Running:

Output: